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Abstract

If S is a discrete set of points in a space, and each point of the space is associated with the

nearest point of S, then the resulting partition is called a Voronoi tessellation. This paper derives

a general scheme for setting up integrals for statistics for tessellations generated from a Poisson

point process. For the case of the plane, the integrals are evaluated to find the variances of

cell area, edge length, perimeter, and number of sides. The distributions of several parameters,

including edge length, are also found.
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0 Introduction

If S is a set of points in a Euclidean space Rn, and each point of the space is associated with
the nearest point of S, then the space is divided into convex polyhedra, or cells. Such a partition
is called a Voronoi tessellation, also known as a Dirichlet or Theissen tessellation. When S is
generated randomly, the result is a random Voronoi tessellation. Such patterns turn up in the
crystallization of metals [1,2], geography [3], pattern recognition [4], numerical interpolation [5],
and many other subjects. This paper sets up a general scheme for calculating statistics of random
Voronoi tessellations for sets S generated by a Poisson point process of unit density. This scheme is
then applied to the particular case of the plane. Succeeding papers will deal with higher dimensions.
Even for the plane, the previously known results are very few. Clearly, the mean cell area is 1.
With probability 1, each vertex will have valence 3, so it follows from Euler’s formula that the mean
number of sides of a cell is 6. Meijering [1] derived the mean cell perimeter to be 4, whence the
mean edge length is 2/3. Gilbert [2] expressed the mean square of cell area as a double integral.
This paper extends Meijering’s and Gilbert’s methods to calculate other second order statistics and
the distributions of several quantities, including edge lengths.

1 Tessellation geometry

Figure 1 shows an example of a random Voronoi tessellation. The points of the plane are of three
types, depending on how many nearest neighbors in S they have. A point with exactly one nearest
neighbor is in the interior of a cell, a point with two nearest neighbors is on the boundary between
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Figure 1: A 100-cell random Voronoi tessellation of a square torus.

A

B

C

Figure 2: Types of points and their neighbor seeds and voids. Point A is a vertex with three neighbor
seeds, point B is an edge point with two neighbor seeds, and point C is an interior point with one
neighbor seed.
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cells, and a point with three nearest neighbors is a vertex where three cells meet. Figure 2 illustrates
a point of each type. There is zero probability that there will be any point with four or more nearest
neighbors, so quadruple vertices do not occur in random tessellations. Any seeming quadruple
vertices in diagrams are really close pairs of triple vertices. In Rn there will be n+1 types of points.
Henceforth, the members of S will be caued seeds (due to their role in generating cells), and point

will refer to a general point in the space, usually specified to be one of the types mentioned above.
The open ball whose center is at a point and which has the nearest neighbor seeds of that point on its
circumference will be called the void of the point. The central object of this paper is a configuration
of seeds and points. The definition of a configuration type consists of

1. the number m of seeds involved,

2. the number k of points and their types, and

3. a specification of which seeds S0, . . . , Sm−1 are nearest neighbors of which points P1, . . . , Pk.

Usually there will be one or two points and their nearest seeds. An example configuration would be a
vertex and its three neighbor seeds. Note that an actual instance of a configuration in a tessellation
may have several possible labellings. For example, a plane vertex configuration has six possible
labellings of its seeds. A complete configuration is a configuration that includes all the neighbor
seeds of its points. Examples would be a vertex and its three neighbor seeds, or an edge point
with its two neighbor seeds. An example of an incomplete configuration would be a vertex and one
neighbor seed. For a complete configuration, item 3 above can be rephrased in two parts:

3a. a specification of the geometrical relation of points to seeds (i.e., on perpendicular bisector, at
circumcenter), and

3b. a requirement that the voids of the points (as defined by 3a) are empty of seeds.

A set of m seeds and k (untyped) points that satisfies the geometrical relationships 3a will be
called a potential configuration. If the condition 3b is also true, it is an actual configuration, and
the points are necessarily of the requisite types. As an example, consider the configuration of a
vertex and its three neighbor seeds. A potential configuration would be any three seeds and their
circumcenter. This is an actual configuration if the void of the configuration is empty of other seeds.
The method of this paper may be outlined as follows:

1. State the problem in terms of an incomplete configuration.

2. Embed the incomplete configuration in a complete configuration.

3. In the space of all potential configurations, write down the expectation measure for all potential
configurations defined by the Poisson process generating the seeds.

4. Multiply by the probability the void region is empty to get the expectation measure for actual
configurations.

5. Integrate over some variables to find the induced measure on the space of incomplete configu-
rations.

6. Solve the original problem.
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2 Configuration spaces and measures

Introduce a canonical parameter space W for all complete configurations of a given type as follows.
Let the seeds have locations S0, . . . , Sm−1. The seed coordinates thus form a space WS = (Rn)m. A
point Pi of the k-dimensional skeleton of the tessellation is on the k-plane through the circumcenter
of its neighbor seeds and perpendicular to the (n− k)-plane those seeds determine. Let yi represent
the coordinates of Pi in this plane. These point parameters yi form a space WP = Rq for some
q. Then W = WS × WP . A tessellation T generates in W a set WT consisting of all the instances
of the configuration occurring in T . Different labelings are considered different instances. Let dµT

be Hausdorff measure of dimension d restricted to WT . The configuration measure dµ will be the
expectation of dµT under the probability measure on the space of tessellations T defined by the
Poisson process generating S. For potential configurations, dµT is the product of a sum of unit point
measures on WS (one for each ordered subset of m seeds of S) and Lebesgue measure on WP . By
the unit density of the Poisson process, the expectation of the sum of the unit point measures is
Lebesgue measure on WS . Hence the potential configuration measure dµpot is Lebesgue measure on
W ,

dµpot = dS0 . . . dSm−1dy1 . . . dyk. (2.1)

The actual configuration measure dµ will be nonzero only on the subdomain W0 of W for which
none of the seeds of the configuration are in any of the voids. In W0, the probability that the voids
will be empty of other seeds of S is the Poisson factor e−A, where A is the n-dimensional measure
of the union of the voids. Hence

dµ = e−AdS0 . . . dSm−1dy1 . . . dyk restricted to W0. (2.2)

It will usually be convenient to change to coordinates relative to S0 for S1, . . . , Sm−1. Note the
Jacobian of this transformation is 1. Also, results will often be in terms of expected value per cell.
For this, we may assume S0 = 0 and factor S0 out of W , leaving parameter space W ′, and factor
off the dS0 part of dµ, which leaves the expected measure dσ for configurations associated with a
single cell (that generated by S0):

dσ = e−AdS1 . . . dSm−1dy1 . . . dyk restricted to W ′

0. (2.3)

3 Single vertex configuration

In this section, we will use the three seed configuration around a vertex P to derive several dis-
tributions. The seed S0 is assumed to be at the origin of coordinates. Let (R1, θ1) be the polar
coordinates of S1 and (R2, θ2) be the polar coordinates of S2, as shown in figure 3a. The single cell
configuration measure is

dσ = e−AdS1dS2 = e−A · R1dR1dθ1 · R2dR2dθ2, (3.1)

with domain W ′

0:

0 < R1, R2 < ∞, 0 ≤ θ1 < 2π, θ1 < θ2 < θ1 + π, (3.2)

and void area
A = π(R2

1 − 2R1R2 cos(θ2 − θ1) + R2
2)/4 sin2(θ2 − θ1). (3.3)

Note that this domain counts each vertex in a cell once, with S1 and S2 in counterclockwise order.
Since there are an average of six vertices per cell,

∫

W0

dσ = 6. (3.4)
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Figure 3: a. Original polar coordinates of S1 and S2. b. Coordinate change for integration.
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Figure 4: Density function for the distribution of the distance between neighboring seeds, from eq.
3.5.

Hence to get a probability measure, one must divide by 6.
To get the probability density function fR for the distance R between seeds of neighboring cells,

one need only take R = R1 and integrate over all variables except R1:

fR(R) =
R

6

∫

∞

0

∫ 2π

0

∫ θ1+π

θ1

e−AR2dθ2dθ1dR2

=
πR

3
(erfc(

√
πR/2) + Re−πR2/4), 0 < R < ∞, (3.5)

where erfc() is the complementary error function. This distribution is plotted in figure 4.
The distribution fθ of the angle θ = θ2 − θ1 between seeds of adjacent neighbors can likewise be

derived, and it turns out to be

fθ(θ) =
4

3π
((π − θ) cos θ + sin θ) sin θ, 0 < θ < π. (3.6)

This distribution is plotted in figure 5.
To get the distribution fr of the distance r from seed to vertex, it is convenient to make a change

of variables before integrating. Replace (R1, θ1, R2, θ2) by (r, ω, α1, α2) , where (r, ω) are the polar
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Figure 5: Density function for the distribution of the angle between adjacent neighbor seeds of a
cell, subtended from the cell’s seed, from eq. 3.6.
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Distance

Figure 6: Density function for the distribution of distances between seeds and vertices, i.e. the
vertex void radii, from eq. 3.9.

coordinates of the vertex P and α1, α2 are the angles from P to S1 and S2 respectively, as shown in
figure 3b. Then

θ1 = ω + α1, R1 = 2r cosα1,

θ2 = ω + α2, R2 = 2r cosα2. (3.7)

Inserting the Jacobian, the configuration measure becomes

dσ = 16e−4πr3/3r3 cosα1 cosα2 sin(α2 − α1)dα1dα2drdω,

0 < r < ∞, 0 ≤ ω < 2π, −π/2 < α1 < α2 < π/2. (3.8)

Integrating over all variables but r and normalizing gives

fr(r) = 2π2r3e−πr2

, 0 < r < ∞. (3.9)

This distribution is plotted in figure 6.
The above probability densities may be multiplied by appropriate factors to give absolute density

functions. For example, if one wanted the expected absolute radial density of neighbor seeds around
a given seed, one would multiply (3.5) by 6, which is the expected number of neighbor seeds.
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Figure 7: Edge configuration. a. Original polar coordinates of S1, S2, and S3. b. Coordinate change
for integration.

4 Edge length distribution

In this section, we will use the three seed configuration around a vertex P to derive several distribu-
tions. The appropriate configuration to use to find out facts about a single edge is the configuration
of four seeds S0, S1, S2, and S3 such that S0, S1, and S2 determine the vertex P1 at one end of the
edge and S0, S1, and S3 determine the vertex P2 at the other end. In polar coordinates for S1, S2,
and S3 relative to S0, as shown in figure 7a, the configuration measure is

dσ = e−AdS1dS2dS3 = e−AR1dR1dθ1 · R2dR2dθ2 · R3dR3dθ3, (4.1)

where A is the area of the union of the void circles of the two vertices and the domain is

0 < R1, R2, R3 < ∞, 0 ≤ θ1 < 2π, θ1 < θ2 < θ1 + π, θ2 < θ3 < θ2 + π, (4.2)

but excluding configurations wherein S2 is in the void circle of P2 and S3 is in the void circle of P1.
This counts an average of six edges per cell, so the probability measure is dσ/6. For convenience, a
change of variables is made to (L, θ1, ω1, ω2, α1, α2) as shown in figure 7b, where

L is the edge length from P1 to P2,

θ1 is the same θ1 ,

ω1 is the angle S1S0P1, positive clockwise,

ω2 is the angle S1S0P2, positive counterclockwise,

α1 is the angle P1S0S2, positive clockwise,

α2 is the angle P2S0S3, positive counterclockwise.

Therefore

dσ = 64e−A sec2 ω1(sin α1 + cosα1 tan ω1) sec2 ω2(sin α2 + cosα2 tan ω2)

×(tanω1 + tanω2)
−6 cosα1 cosα2dα1dα2dθ1dω1dω2dL, (4.3)

with domain
0 < L < ∞, 0 ≤ θ1 < 2π, −

π

2
< ω1 <

π

2
, −ω1 < ω2 <

π

2
,
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−ω1 < α1 <
π

2
, −ω2 < α2 <

π

2
, −ω2 < α2 <

π

2
. (4.4)

Integrating over θ1, α1, and α2 analytically and normalizing gives the probability density function
fL for edge length:

fL(L) =
16π

3
L5

∫ π/2

−π/2

∫ π/2

−w1

e−L2B/(tan ω1+tan ω2)
2

(tan ω1 + tanω2)
−6

×
((π

2
+ ω1

)

tan ω1 + 1
)((π

2
+ ω2

)

tan ω2 + 1
)

sec2 ω1 sec2 ω2dω2dω1, (4.5)

where
B =

(π

2
+ ω1 + sin ω1 cosω1

)

sec2 ω1 +
(π

2
+ ω2 + sin ω2 cosω2

)

sec2 ω2. (4.6)

The results of numerical integration are given in Table 1 and plotted in figure 8. A less singular
formulation is

fL(L) =
16π

3
L5

∫ π/2

−π/2

∫ π/2

−w1

e−L2B̂/ sin2(ω1+ω2) sin−6(ω1 + ω2) (4.7)

×
((π

2
+ ω1

)

sin ω1 + cosω1

)((π

2
+ ω2

)

sinω2 + cosω2

)

cos3 ω1 cos3 ω2dω2dω1,

where
B̂ =

(π

2
+ ω1 + sinω1 cosω1

)

cos2 ω2 +
(π

2
+ ω2 + sin ω2 cosω2

)

cos2 ω1. (4.8)

Exactly,

fL(0) =
2

π
. (4.9)

Asymptotically, for large L,

fL(L) ≈ π2L2e−πL2/2/3
√

2. (4.10)

The moments of L are

E[Ln] =
8π

3

∫ π/2

−π/2

∫ π/2

−w1

B̂−(n+6)/2 sinn(ω1 + ω2) (4.11)

×
((π

2
+ ω1

)

sin ω1 + cosω1

)((π

2
+ ω2

)

sinω2 + cosω2

)

cos3 ω1 cos3 ω2dω2dω1.

From the same starting measure (4.3), one can also derive the distribution fω of the angle ω
between adjacent vertices as seen from S0. Let ω = ω1 + ω2 be the angle in question. Then

fw(ω) =
16π

3

∫ π/2

ω−π/2

B−3
((π

2
+ ω1

)

tanω1 + 1
)((π

2
+ ω2

)

tan ω2 + 1
)

sec2 ω1 sec2 ω2dω2,

0 < ω < π. (4.12)

A more non-singular version is

fw(ω) =
16π

3

∫ π/2

ω−π/2

B̂−3
((π

2
+ ω1

)

sinω1 + cosω1

)((π

2
+ ω2

)

sin ω2 + cosω2

)

cos3 ω1 cos3 ω2dω2.

(4.13)
The limiting values are

fw(0) =
20

3π
−

4π

9
, (4.14)

and

fω(ω) ≈
(

π

2
−

4

3

)

(π − ω) as ω → π. (4.15)

The results of numerical integration are given in Table 2 and plotted in figure 9.
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Figure 8: Density function for the distribution of edge lengths, from eq. 4.5.

30 60 90 120 150 180
Angle

Figure 9: Density function for the distribution of angles between adjacent vertices, as subtended
from seed, from eq. 4.9.
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Figure 10: General point pair configuration. This shows two vertices P1 and P2 not on the same
edge. a. Original polar coordinates. b. Variables for integration.

5 Second order statistics

Second order statistics, such as the expected square of cell area, can be calculated by finding the
measure of pairs of points (P1, P2) associated with the cell generated by S0. There are three types of
points, and hence six types of pairs to consider. Each type of pair configuration has as its void region
the union of the appropriate void circles of the two points. It will turn out below that it is only
necessary to compute for configurations in which the two points have no neighbor seeds in common
except S0. With S0 fixed, the potential configurations for P1 and P2 are independent. Hence, the
configuration measure may be written

dσ = e−Adσ1dσ2, (5.1)

where A is the void area and dσi is the potential configuration measure for Pi. The configuration
coordinates and measures for Pi are (see figure 10):

i. If Pi is an interior point with neighbor S0:

(ri, θi) : polar coordinates of Pi,

dσi = ridridθi. (5.2)

ii. If Pi is a boundary point with neighbors S0 and Si:

(Ri, θi) : polar coordinates of Si,

yi : distance from S0Si midpoint to Pi, (5.3)

dσi = RidRidβidyi.

iii. If Pi is a vertex with neighbors S0, Si1, and Si2,

(Ri1, θi1) : polar coordinates of Si1,

(Ri2, θi2) : polar coordinates of Si2, (5.4)

dσi = Ri1dRi1dθi1Ri2dRi2dθi2.

To set up useful coordinates, let P1 and P2 be taken in counterclockwise order around S0. To
conform to the natural symmetry of the configuration, angles measured from P1 will be positive
clockwise and angles measured from P2 will be positive counterclockwise. See figure 10b. All types
of configurations will use these parameters:
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(z, φ): polar coordinates of the point Q on the segment P1P2 that is closest to S0, 0 ≤ z < ∞,
0 ≤ φ < 2π,

ω1: the angle QS0P1, −π/2 < ω1 < π/2,

ω2: the angle QS0P2, −ω1 < ω2 < π/2.

In addition, if Pi is a boundary point with neighbor seed Si, then use

αi: the angle PiS0Si, −ωi < αi < π/2.

If Pi is a vertex with neighbor seeds Si1 and Si2, use

αi1: the angle PiS0Si1 , −ωi < αi1 < π/2.

αi2: the angle PiS0Si2, αi1 < αi2 < π/2.

Making the changes of variables, it turns out that the configuration measure can be written

dσ = e−Bz2

g1g2 sin(ω1 + ω2)zdzdω1dω2dφ, (5.5)

where B is given by (4.6) and the factor gi for a point Pi is

gi =







z sec3 ωi, Pi is an interior point;
4z2 sec4 ωi cosαi1dαi1, Pi is a boundary point;
16z3 sec5 ωi cosαi1 cosαi2 sin(αi2 − αi1)dαi1dαi2, Pi is a vertex.

(5.6)

Let I(·, ·) denote the complete integral over the appropriate configuration measure dσ for the pair
type (·, ·) , where the pair elements can be a, p, or v, representing interior, boundary, or vertex
points respectively. The variables z, φ, and all α’s can be integrated analytically, leaving

I(·, ·) = πΓ

(

n1 + n2 + 2

2

)
∫ π/2

−π/2

∫ π/2

−w1

B−(n1+n2+2)/2G1(ω1)G2(ω2) sin(ω1 + ω2)dω2dω1 (5.7)

where Gi(wi) and ni depend on the type of point Pi:

Gi(ωi) =







sec3 ωi, Pi is an interior point;
4(1 + sin ωi) sec4 ωi, Pi is a boundary point;
2((π/2 + ωi)(1 + 2 sin2 ωi) + 3 sinωi cosωi)) sec5 ωi, Pi is a vertex.

ni =







1, Pi is an interior point;
2, Pi is a boundary point;
3, Pi is a vertex.

(5.8)

In a less singular way,

I(·, ·) = πΓ

(

n1 + n2 + 2

2

)
∫ π/2

−π/2

∫ π/2

−w1

B̂−(n1+n2+2)/2 (5.9)

Ĝ1(ω1)Ĝ2(ω2) sin(ω1 + ω2) cosn2 ω1 cosn1 ω2dω2dω1

where

Ĝi(ωi) =







1, Pi is an interior point;
4(1 + sinωi), Pi is a boundary point;
2((π/2 + ωi)(1 + 2 sin2 ωi) + 3 sinωi cosωi)), Pi is a vertex.

(5.10)
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I(·, ·) finds the expected measure of pairs of points of the types under consideration, with the
second counterclockwise from the first by less than π. In the expectations and variances below, a is
the area, p is the perimeter, and v is the number of vertices of a cell. I(a, a) counts pairs of interior
points in counterclockwise order, and E[a2] counts each such pair twice, so

E[a2] = 2I(a, a), Var[a] = E(a2) − E(a)2. (5.11)

I(a, p) counts only half the pairs of interior and perimeter points, and E[ap] counts them all, so

E[ap] = 2I(a, p), Cov[a, p] = E[ap] − E[a]E[p]. (5.12)

I(p, p) counts pairs of perimeter points not on the same edge, so

E[p2] = 2I(p, p) + 6E[L2], Var[p] = E[p2] − E[p]2. (5.13)

I(a, v) half counts pairs of interior points and vertices, so

E[av] = 2I(a, v), Cov[a, v] = E[av] − E[a]E[v]. (5.14)

I(p, v) half counts pairs of perimeter points and vertices not on the same edge, so

I(p, v) = E[p(v − 2)]/2, E[pv] = 2I(p, v) + 2E[p],

Cov[p, v] = E[pv] − E[p]E[v]. (5.15)

I(v, v) counts pairs of vertices not on the same edge, so

I(v, v) = E[v(v − 3)/2], E[v2] = 2I(v, v) + 3E[v],

Var[v] = E[v2] − E[v]2. (5.16)

The results of numerical integration are given in table 3.

6 Triangular cells

It is easy enough to write down the configuration measure for a k-sided cell. However, it results in
integration over 2k variables. But with a little ingenuity, the integrals for triangles are practical.
The details are messy and add no insight to what has already been presented, so I will just present
the results of numerical integration:

Probability of triangle: 0.01124001348534

Mean triangle area: 0.34308914805

Mean triangle perimeter: 2.74029726648

Other information about cells with a given number of sides is so far known only through computer
simulations [6].
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7 Cell void distributions

There is one remarkable exception to the last statement of the last section. The cell void of a cell
is the union of all the voids of the points of the cell, which is the same as the union of the voids
of all the vertices. By a simple argument, it is possible to completely specify the distribution of
measures of cell voids for k-sided cells in n dimensions. A k-sided cell has k neighbor seeds, so the
configuration measure for k-sided cells is

dσ = e−ARn−1
1 dR1dθ1 . . . RkdRn−1

k dθk, (7.1)

with an appropriate domain. The θi represent all angular variables. Make a change of variables to
the total cell void measure A and a set of dimensionless parameters Ω. Scaling homogeneity and
dimensional analysis shows that the configuration measure takes the form

dσ = g(Ω)dΩe−AAk−1dA, (7.2)

and the domain of Ω does not depend on A. Integrate over Ω to get the distribution function fk(A)
for cell void measures of k-sided cells:

fk(A) = ce−AAk−1. (7.3)

Normalizing to total probability one, we get the conditional probability density function:

fk(A) = Ak−1e−A/(k − 1)!, (7.4)

which is a gamma distribution. It is interesting to note that this immediately implies that the mean
cell void measure for k-sided cells is exactly k.

8 Variance of regional totals

Distant cells of a tessellation are practically independent of each other since the influence of a
local configuration falls off exponentially as the square of the distance. However, nearby cells not
independent. This means that the variance of the sum of a statistic in a region is not just the
sum of the variances of single cases. This is relevant in estimating the accuracy of the results of
simulation. For tractability, the region considered here will be a torus of area N. A torus is a square
with its opposite edges identified. It is convenient here because it is a finite, flat region without any
boundary. Assume the area is large enough so that wrap-around effects are negligible.

Some totals have easily found variances. For a unit density Poisson process on a torus of area
N, the variance in the number of cells is just N, by the properties of the Poisson distribution. The
variances of the total numbers of edges and vertices are 9N and 4N respectively, since there are three
times as many edges and twice as many vertices as cells. The variance of the total edge length is
not as simply found, but it can be reduced to a double integral and evaluated numerically. In what
follows, L is the length of a single edge, and ΣL is the total edge length. Since

Var[ΣL] = E[(ΣL)2] − E[ΣL]2 (8.1)

and E[ΣL] = 2N , it remains to find E[(ΣL)2]. Now T = (ΣL)2 is the measure of all ordered pairs
(P1, P2) of edge points, which can be divided into three domains:

I: pairs on the same edge,

II: pairs on different edges of the same cell, and
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III: pairs not on the same cell.

The expected totals of I and II are already known:

E[TI ] = 3NE[L2], E[TII ] = N(E[p2] − 6E[L2]). (8.2)

Domain III pairs correspond to configurations of four seeds S11, S12, S21 and S22, and two edge
parameters y1 and y2, with (S11, S12, y1) locating P1 and (S21, S22, y2) locating P2. The configuration
measure is

dµ =
1

4
e−AdS1dS2dy1dS21dS22dy2, (8.3)

where A is the area of the void region, which is the union of the void circles around the two edge
points. The factor of 1/4 is necessary to correct for multiple counting of the same pair due to seed
labellings. Domain III can be broken up into two pieces:

IIIA: Non-overlapping voids, and

IIIB: Overlapping voids.

On IIIA, we have A = A1 + A2, where A1 and A2 are the areas of the void circles. Here, the
configuration measure factors:

dµIIIA =
1

2
e−A1dS11dS12dy1 ·

1

2
e−AzdS21dS22dy2, (8.4)

On domain IIIA, the integral of (8.4) is the product of integrals for total edge, with result 2N · 2N .
From this must be subtracted the integral of (8.4) over domain IIIB. For this, change to variables
(as shown in figure 11)

(x1, x2) : location of first edge point,
(R, θ) : polar coordinates of second edge point relative to the first,
r1, r2 : radii of the two void circles,

α11, α12, α21, α22 : position angles of the seeds on the void circles.

Then (8.4) becomes

dµIIIB = 4e−πr2

1
−πr2

2r2
1r

2
2R sin

α12 − α11

2
sin

α22 − α21

2
dα11dα12dα21dα22dr1dr2dRdθdx1dx2,

(8.5)
with domain IIIB becoming

0 < α11 < α12 < 2π, 0 < α21 < α22 < 2π,

0 < r1, r2 < ∞, 0 < R < r1 + r2, 0 < θ < 2π, (8.6)

(x1, x2) in torus.

The range on r1 and r2 is not exact, but it is necessary for tractibility and the error is negligible for
large N. The value of the integral is (12 − 32/π)N , so

E[TIIIA] = 4N2 − (12 − 32/π)N. (8.7)

Finally, the integral of (8.3) over IIIB can be put into a form similar to integrals of previous sections
by making the further change of variables from (r1, r2, R) to (ω1, ω2, z) with

r1 = z sec ω1,

r2 = z sec ω2, (8.8)

R = z(tanω1 + tanω2).
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The configuration measure becomes

dµIIIB = 4e−Bz2

z7 sec5 ω1 sec5 ω2 sin
α12 − α11

2
sin

α22 − α21

2
sin2(ω1 + ω2)

×dα11dα12dα21dα22dω1dω2dzdθdx1dx2, (8.9)

where B is as before. Domain IIIB excluding configurations with seeds in voids is

0 < z < ∞, −
π

2
< ω1 <

π

2
, −ω1 < ω2 <

π

2
,

π

2
− ω1 < α11 < α12 <

3π

2
+ ω1,

π

2
− ω2 < α21 < α22 <

3π

2
+ ω2, (8.10)

0 < θ < 2π, (x1, x2) in torus.

Integrating over z, α11, α12, α21, α22, θ, x1, and x2 leaves

E[TIIIB] = 384N

∫ π/2

−π/2

∫ π/2

−ω1

B−4F (ω1)F (ω2) sin(ω1 + ω2)dω1dω2, (8.11)

where
F (ω) = (π/2 + ω − cosω) sec5 ω. (8.12)

Numerical integration yields
E[TIIIB] = 8.17520721090347 (8.13)

The net result is
Var[ΣL] = 1.04456853531195N. (8.14)

Total perimeter is twice total edge, so the variance of total perimeter is

Var[Σp] = 4.17827414124760N. (8.15)

Note the variance is proportional to area, which is to be expected since distant regions are indepen-
dent, so their variances would add.

9 Conclusion

The use of configuration measures makes it possible to write down integrals for many statistics
regarding random Voronoi tessellations. The necessary condition is that the statistic be expressible
in terms of the total Hausdorff measure of some type of configuration of points. The practical
difficulty comes in evaluating the integrals. Future papers will report on the statistics of higher
dimensional tessellations and their cross-sections.
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Table 1. Probability density function fL of edge lengths L of random plane Voronoi tessellations,
normalized for unit seed density.

L fL L fL L fL

0.00 7.545123228060E-1 1.70 7.823754374633E-2 3.40 3.669523763846E-7
0.05 7.636277464120E-1 1.75 6.306081962957E-2 3.45 2.205022285610E-7
0.10 7.731661096492E-1 1.80 5.036087814589E-2 3.50 1.314099265451E-7
0.15 7.830985778046E-1 1.85 3.985103540144E-2 3.55 7.767123794257E-8
0.20 7.932991012282E-1 1.90 3.124793411031E-2 3.60 4.553170350443E-8
0.25 8.035106314634E-1 1.95 2.428065760305E-2 3.65 2.647242639388E-8
0.30 8.133289320658E-1 2.00 1.869727373767E-2 3.70 1.526525829628E-8
0.35 8.222060443266E-1 2.05 1.426905749239E-2 3.75 8.730705302919E-9
0.40 8.294731115367E-1 2.10 1.079272366266E-2 3.80 4.952600633009E-9
0.45 8.343800232174E-1 2.15 8.091040073822E-3 3.85 2.786506007724E-9
0.50 8.361474851396E-1 2.20 6.012195325818E-3 3.90 1.555096669929E-9
0.55 8.340258609372E-1 2.25 4.428272348244E-3 3.95 8.607087923971E-10
0.60 8.273545865994E-1 2.30 3.233138747860E-3 4.00 4.725338077814E-10
0.65 8.156161501103E-1 2.35 2.340014888064E-3 4.05 2.573157514659E-10
0.70 7.984794798673E-1 2.40 1.678927267877E-3 4.10 1.389824348877E-10
0.75 7.758289450996E-1 2.45 1.194202923612E-3 4.15 7.445890060086E-11
0.80 7.477768377829E-1 2.50 8.421135844139E-4 4.20 3.956757870629E-11
0.85 7.146589591473E-1 2.55 5.887381304827E-4 4.25 2.085601685546E-11
0.90 6.770145682878E-1 2.60 4.080793621783E-4 4.30 1.090423216158E-11
0.95 6.355532970282E-1 2.65 2.804461682718E-4 4.35 5.655006336047E-12
1.00 5.911125800252E-1 2.70 1.910942749742E-4 4.40 2.909033212120E-12
1.05 5.446096396456E-1 2.75 1.291069058891E-4 4.45 1.484375096028E-12
1.10 4.969921081934E-1 2.80 8.648977070415E-5 4.50 7.513126318300E-13
1.15 4.491910219664E-1 2.85 5.745169748060E-5 4.55 3.772090640750E-13
1.20 4.020792737766E-1 2.90 3.784188448041E-5 4.60 1.878582199449E-13
1.25 3.564377728141E-1 2.95 2.471626945074E-5 4.65 9.280408714649E-14
1.30 3.129306453972E-1 3.00 1.600816188742E-5 4.70 4.547732294753E-14
1.35 2.720899186674E-1 3.05 1.028149162106E-5 4.75 2.210627089611E-14
1.40 2.343093427142E-1 3.10 6.548386028079E-6 4.80 1.065934658233E-14
1.45 1.998463804269E-1 3.15 4.136023068908E-6 4.85 5.098489898042E-15
1.50 1.688309573588E-1 3.20 2.590650881905E-6 4.90 2.419073332676E-15
1.55 1.412793203743E-1 3.25 1.609231477082E-6 4.95 1.138551071076E-15
1.60 1.171112882989E-1 3.30 9.913293951915E-7 5.00 5.315542196010E-16
1.65 9.616926059581E-2 3.35 6.056380732764E-7
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Table 2. Probability density function fω of vertex-seed-vertex angles of random plane Voronoi
tessellation, normalized for unit seed density.

angle probability
0.00π 7.25802506296473E− 1
0.01π 7.09744517404633E− 1
0.02π 6.94283748167271E− 1
0.03π 6.79390752015949E− 1
0.04π 6.65037713225037E− 1
0.05π 6.51198337206598E− 1
0.06π 6.37847748950422E− 1
0.07π 6.24962398929240E− 1
0.08π 6.12519975851668E− 1
0.09π 6.00499325701744E− 1
0.10π 5.88880376554612E− 1
0.11π 5.77644068703699E− 1
0.12π 5.66772289676010E− 1
0.13π 5.56247813749588E− 1
0.14π 5.46054245620922E− 1
0.15π 5.36175967900761E− 1
0.16π 5.26598092144542E− 1
0.17π 5.17306413148858E− 1
0.18π 5.08287366268282E− 1
0.19π 4.99527987527738E− 1
0.20π 4.91015876324549E− 1
0.21π 4.82739160531626E− 1
0.22π 4.74686463829037E− 1
0.23π 4.66846875105628E− 1
0.24π 4.59209919785597E− 1
0.25π 4.51765532946953E− 1
0.26π 4.44504034109980E− 1
0.27π 4.37416103583916E− 1
0.28π 4.30492760269500E− 1
0.29π 4.23725340823645E− 1
0.30π 4.17105480100433E− 1
0.31π 4.10625092790036E− 1
0.32π 4.04276356183924E− 1
0.33π 3.98051694001064E− 1

angle probability
0.34π 3.91943761215642E-1
0.35π 3.85945429832324E-1
0.36π 3.80049775560122E-1
0.37π 3.74205065340687E-1
0.38π 3.68539745691271E-1
0.39π 3.62912431826782E-1
0.40π 3.57361897529207E-1
0.41π 3.51882065736399E-1
0.42π 3.46466999825624E-1
0.43π 3.41110895570550E-1
0.44π 3.35808073753409E-1
0.45π 3.30552973416963E-1
0.46π 3.25340145743655E-1
0.47π 3.20164248551881E-1
0.48π 3.15020041401779E-1
0.49π 3.09902381305225E-1
0.50π 3.04806219036860E-1
0.51π 2.99726596045024E-1
0.52π 2.94658641963323E-1
0.53π 2.89597572725314E-1
0.54π 2.84538689286382E-1
0.55π 2.79477376958316E-1
0.56π 2.74409105363412E-1
0.57π 2.69329429015990E-1
0.58π 2.64233988540212E-1
0.59π 2.59118512533805E-1
0.60π 2.53978820087831E-1
0.61π 2.48810823972991E-1
0.62π 2.43610534503012E-1
0.63π 2.38374064085507E-1
0.64π 2.33097632470244E-1
0.65π 2.27777572704003E-1
0.66π 2.22410337800155E-1
0.67π 2.16992508129651E-1

angle
0.68π
0.69π
0.70π
0.71π
0.72π
0.73π
0.74π
0.75π
0.76π
0.77π
0.78π
0.79π
0.80π
0.81π
0.82π
0.83π
0.84π
0.85π
0.86π
0.87π
0.88π
0.89π
0.90π
0.91π
0.92π
0.93π
0.94π
0.95π
0.96π
0.97π
0.98π
0.99π
1.00π

probability
2.11520799538384E-1
2.05992072193657E-1
2.00403340159989E-1
1.94751781701410E-1
1.89034750303980E-1
1.83249786408308E-1
1.77394629837405E-1
1.71467232900285E-1
1.65465774146261E-1
1.59388672738896E-1
1.53234603412076E-1
1.47002511963632E-1
1.40691631234420E-1
1.34301497512720E-1
1.27831967295366E-1
1.21283234328077E-1
1.14655846838216E-1
1.07950724863601E-1
1.01169177571184E-1
9.43129204494244E-2
8.73840922481807E-2
8.03852715300028E-2
7.33194926869179E-2
6.61902612674264E-2
5.90015684494880E-2
5.17579044870414E-2
4.44642709502077E-2
3.71261915729888E-2
2.97497215171788E-2
2.23414548575816E-2
1.49085300916750E-2
7.45863347680132E-3
0.00000000000000E0
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Table 3. Numerical integration results for second order statistics of random plane Voronoi tes-
sellations, normalized for unit seed density.

E[L2] 0.6300717791
E[a2] 1.2801760409267
E[p2] 16.9454930107385
E[v2] 37.7808116990122
E[ap] 4.4904721130071
E[av] 6.4008802046335
E[pv] 24.6505831238765
Var[L] 0.1856273347051
Var[a] 0.2801760409267
Var[p] 0.9454930107385
Var[v] 1.7808116990122
Cov[a, p] 0.4904721130071
Cov[a, v] 0.4008802046335
Cov[p, v] 0.6505831238765

Legend:
L Single edge length.
a Cell area.
p Cell perimeter.
v Number of vertices of cell.
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