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Abstract

The soap film problem is to minimize area, and its dual is to maximize
the flux of a divergenceless bounded vectorfield. This paper discretizes the
continuous problem and solves it numerically. This gives upper and lower
bounds on the area of the globally minimizing film. In favorable cases,
the method can be used to discover previously unknown films. No ini-
tial assumptions about the topology of the film are needed. The paired
calibration or covering space model of soap films is used to enable repre-
sentation of films with singularities.

1 Introduction

The soap film problem is to find the soap film that minimizes area subject to
appropriate constraints. The two fundamental problems addressed by the nu-
merical methods in this paper are finding a globally area minimizing film for
a given soap film problem; and proving that a given film is indeed a global
minimum. A precise definition of what a soap film problem is will have to wait
until section 3, but an intuitive idea is enough to see the difficulties. Loosely
speaking, soap films are area minimizing hypersurfaces, but their treatment in
full generality is complicated by the fact that they are not always smooth man-
ifolds, but may have singularities. For 2-dimensional films in a 3-dimensional
ambient space, the possible singularities are a triple line, where three films meet
at 120° along a curve, or a tetrahedral point, where six films and four triple
lines meet at equal angles, proven by Jean Taylor [Taylor 1976]. Further types
of singularities are possible in higher dimensions [Brakke 1991] [Sullivan 1995].
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A computer program such as the Surface Evolver [Brakke 1992] can represent
a surface as a set of flat triangles (or curved patches in more generality), and
hence provide an upper bound for area. But the topology of the surface has
to be provided at the beginning, and although the topology may change during
the evolution to minimum area, all one has at the end is a local minimum of
a discrete problem. In very limited circumstances, one can show there is a
smooth minimal surface nearby [Underwood 1993], but that is still only a local
minimum. The topology of the global minimum may be entirely different. What
is needed is a lower bound on the area of the global minimum. If one can get the
upper and lower bounds equal, then one has a global minimum. Of course, the
global minimum may not be unique. For example, a cubical wire frame bounds
an apparent minimizer with a rounded square in the center, and that square
can be parallel to any side of the cube.

Fortunately, it often happens that a minimization problem has a correspond-
ing maximization problem whose optimum has the same value. These are called
dual problems. A simple example is minimizing the circumference of a given
area, and maximizing the area bounded by a given length of circumference. A
more relevant example here is the max-flow min-cut theorem of network theory:
given a graph whose edges have fixed carrying capacities with some nodes des-
ignated sources and some designated sinks, find the maximum total flow from
sources to sinks. The dual minimization problem is to find a minimal cut, a
set of edges with minimum total capacity that separates the sources from the
sinks. A continuous version of this that applies to orientable, nonsingular soap
films was introduced by [Federer 1969, Federer 1974] and named calibration by
[Harvey and Lawson 1982]. The dual maximization problem is to find a diver-
genceless vectorfield of maximum magnitude 1 with maximum flux through the
given boundary of the film. Intuitively, the vectorfield is the velocity of an in-
compressible fluid. The surface of minimal area is the bottleneck to the flow, so
for maximum velocity 1 the maximum flux equals the minimum area.

This paper treats only the area minimization problem with boundary con-
straints. In particular, it does not treat soap bubble problems (with volume
constraints), nor capillary problems (with gravitational energy), although in fa-
vorable circumstances these problems are susceptible to extensions of the meth-
ods of this paper.

Section 2 gives some preliminary background on surfaces and flows. Section
3 describes a more general calibration model that can handle soap film singu-
larities. Section 4 describes discretization of the model into a form that is a
standard optimization problem. Section 5 describes a particular implementa-
tion using the Surface Evolver and some custom programs to generate data that
can be fed to optimization software. Section 6 discusses some results obtained
so far. Briefly, there is the first known calibration of the network spanning
the vertices of a regular hexagon, a novel solution found by computer of an-
other plane problem, and some preliminary results on the conjectured minimal
film spanning an octahedral frame. Section 7 discusses some works by others



that have similarities to the approach presented here. Section 8 concludes and
outlines some future prospects.

2 Preliminaries

The only mathematical background necessary to understand this paper are the
standard concepts of an advanced calculus course (surface integrals, the Di-
vergence Theorem, etc.). But occasional references to more general concepts
of integral geometry (currents and differential forms) are tossed in for the
cognoscenti. This section explains just enough about currents and differential
forms for the purposes of this paper. For fuller discussions, see [Federer 1969]
or [Morgan 1995].

The overall domain will be N-dimensional Euclidean space RY, although
the ideas extend naturally to any Riemannian manifold. Domains for particular
problems are usually chosen to be compact convex sets, since a soap film is
always contained in the convex hull of its boundary. All soap films will be
(N-1)-dimensional. The types of integrals needed will be integrals of scalar
functions over regions and integrals of vectorfields over hypersurfaces. A region
R may be defined by a characteristic function yg(z), with the integral of a
scalar function f(z) being

/Rf(l‘)dN;r:/RNf(x)XR(l,)de.

We will want to generalize the notion of region so that its characteristic function
becomes instead a density function Q(z) with real values instead of integer
values. We still can define the integral of f(z) as

/Rf(;b)d r = RNf(m)Q(r)d z.

This type of region will be referred to as a “smeared” region. Soap films will be
viewed as the boundaries of regions. The boundary dR of a region R is defined
precisely to make the Divergence Theorem true. If #(z) is a smooth vectorfield
with compact support, then

/Rdivﬁ(:c)dN:n:/aRﬂ(m)~ﬁ(x)dA.

For an ordinary region R, OR is the surface of the region with outward unit
normal N. For a smeared region, the boundary is representable by the negative
gradient of the density function:

/ _divi(2)Q(z)d z = —/ _i(x) - grad Q(z)d"e.



This may be derived by applying the ordinary Divergence Theorem to
/ div(ii(z)Q(x))dN x
B

where B is some large ball containing the support of @(z). The boundary of a
smeared region is a smeared surface.

Technically, objects one does k-dimensional integrals over are called k-currents,
and the k-dimensional integrands are called differential k-forms. Thus our re-
gions are N-currents, scalar functions are N-forms (also called pseudoscalars),
vectorfields are (N-1)-forms, and surfaces are (N-1)-currents. Smeared surfaces
should still be regarded as (N-1)-dimensional objects, even though they are
smeared out over all N dimensions. The particular class of currents we need
are called flat chains, and the vectorfields are the class of flat cochains. In par-
ticular, a flow will be a divergenceless flat (N-1)-cochain. It turns out to be
relatively easy to characterize a flow. It need only be a measurable, bounded
vectorfield, and have zero divergence in the weak sense. The latter means that
if ¥ is a vectorfield and f is a smooth function with compact support, then

/'ﬁ'~gradf:0.

Flows need not be continuous, but at a line of discontinuity the components
normal to the line on both sides must be equal. This is enough to guarantee
the integrability of flows on all surfaces of interest. The flows in this paper will
be piecewise linear and constructed to have zero divergence.

The surfaces in the continuous theory are flat (IV-1)-chains. Flat chains
are dual to the flat cochains. So a flat chain is anything one can integrate
flat cochains over. A flat N-chain is simply an integrable scalar function. The
boundary of a flat N-chain is automatically a flat (N-1)-chain, so the regions
defined above with density functions @ are flat N-chains, and their boundaries
are flat (N-1)-chains. Another way to form a flat chain is to take an oriented rec-
tifiable set. Flat chains that are integer multiples of oriented rectifiable sets are
called integer flat chains, and are what we usually think of as soap films. Recti-
fiable flat chains are rectifiable sets multiplied by real-valued densities. General
flat chains are called real flat chains to emphasize the distinction. Hereafter we
will often use integer film as a synonym for integer flat chain, and real film for
real flat chain.

The equivalent of area for a flat chain T is its mass M(T), defined as the
maximum integral over flat cochains of maximum norm 1:

M(T) = sup{/ @ such that ||d(z)|| < 1 for all z}.
a T

Note the sup is over all flat cochains, not just those with zero divergence. The
mass need not be finite, although it will be for all our problems. The mass of an



integer flat chain is just the area of the rectifiable set, times any multiplicities.
If T is the boundary of a flat N-chain with density function @), then the mass
of T' is the total variation of @):

M(T) = / llgrad Q(z)||dVe.

Hence for finite surface mass, we may take ) to be any function of bounded
variation. If ) is a characteristic function of a set, then the boundary of the set is
an integer flat chain. Defining the film by means of ) is the bounded variation
approach to minimal surfaces of [Giusti 1984]. The flat (N-1)-chains in this
paper will either be unions of (N-1)-dimensional simplices or be boundaries of
piecewise linear functions.

3 The continuous model

The mathematical model of soap films used in this paper is the paired calibration
[Lawlor and Morgan 1994] or covering space model [Brakke 1995]. The paired
calibration model will be described first, as it is perhaps a little clearer. Then
the fully general covering space model will be defined.

3.1 The paired calibration model

The paired calibration model regards a soap film as a set of interfaces between
regions which form a partition of the domain. Figure 1 is a diagram of the model
in the case of finding the shortest 1-dimensional film joining the three vertices
of an equilateral triangle (Py, Po, Ps in figure 1). Let the regions be denoted
Ry, ..., ;. Let H;; be the interface between regions R; and R;, regarded as
an oriented surface, or flat chain to be more precise. Hence H;; = —Hj;. Each
region also has an outer boundary S; = Ej H;; —0R; which is regarded as fixed.
S; is called the reference surface for region R;. The orientations are chosen here
so S; and E]' H;; are homologous. Note this makes S; have inward normal. The
minimization problem is

Minimize 7 = Zarea(Hij).
i<j
A paired calibration is a set of flows ¥;, one per region, each defined over the
entire domain, such that

vi(z) — v (2)|| <1 for all 7,7 and all z.
|17 (z) — v ()]

The total flur F' of a paired calibration is defined as

F:Z/Szl_frdj‘l.



Figure 1: Paired calibration of the tripod.

Theorem 1 If {¥;} is a paired calibration for the set of surfaces {S;}, then for
any regions {R;} and corresponding interfaces {H;;}, the total fluz is at most

Z/S - dA < Zarea(HZ-j).
i i

the interface area:

i<

Proof: Since div v; = 0, then by the Divergence Theorem, some rearrangement,

and the flow difference bound,

Z:/SliidA

INA
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Hence the total flux of a paired calibration provides a lower bound on the
areas of possible soap films. If one can find a paired calibration whose flux is
equal to the area of a soap film, then one has a proof that the soap film is a
global minimum of area, and we say the vectorfields calibrate the film. The
calibration is far from unique. The proof of Lemma 3.1 shows the only serious
constraint on it is that the difference of flows be a unit normal at the minimal
films.
It is important to realize that if there are multiple global minimal films (as
for the cubical wire frame), then any calibration must calibrate all minimal films
simultaneously, as follows immediately from the proof.

3.2 Example: simplicial cones

In Figure 1, the minimal film consists of three segments from the vertices
Py, Ps, P3 to the center of the triangle. Thus it is a cone generated by the
three vertices. I call this film the tripod. The simplest calibration consists of
three vectorfields, each constant over all of R?, of magnitude 1/4/3 and parallel
to a segment. Note that it is the magnitude of the difference between vector-
fields that is bounded by 1, not the magnitudes of the individual vectorfields.
The same kind of calibration can be done to show that the (/N-1)-dimensional
cones over the (N-2)-dimensional skeletons of regular N-simplices are absolutely
minimizing [Lawlor and Morgan 1994].

3.3 Existence

It follows from Theorem 6.1 of [Brakke 1995] that for any set of reference sur-
faces {S;} there always is a set of corresponding interfaces {H;;} that can be
calibrated, but the notion of surface must be understood in the general sense
of real flat chains. Soap films are usually imagined to be integer density sur-
faces, and the existence of global minimizers among integer density films may be
proven by compactness. But there are cases where the real density minimum is
different from the integer density minimum, and in that case the integer density
minimum cannot be calibrated. A prime example is the single bubble problem:
to find the minimum area enclosing a given volume. (Although we are not oth-
erwise considering volume constraints in this paper, the techniques generalize.)
The integer film minimum is just a sphere, but in the sense of real flat chains,
a sphere of twice the radius and 1/8 the density bounds the same volume but
has only half the mass. Hence the real flat chain minimizer does not exist, as
the radius goes to infinity and the density and mass go to zero.



3.4 The covering space model

The covering space model is a generalization of the paired calibration model
that can handle films that don’t divide space into distinct regions, such as a
mobius band film, for example. Let M be a compact region in R”, which will
be the domain holding the film. Let B C M be a closed set, which is meant to
hold the boundary of the film. Let Y be a covering space of the complement
M — B. Let W be the covering space of M — B that, over each point of M,
has one sheet for each oriented pair of sheets of Y. Hence locally one can talk
about sheet ¢ of Y and sheet ij of W. For an oriented surface H in W, define
the projection w4 H to be the surface in Y obtained by copying from sheet ij
of W a positive copy to sheet i of Y and a negative copy to sheet j of Y. The
relation to paired calibrations is that regions correspond to sheets of Y, and sets
of interfaces correspond to surfaces H in W. A reference surface S is defined to
be a portion of the boundary of Y.

A particular area minimization problem is defined by a choice of Y, and a
choice of S. The problem is

Minimize area(H) where w4 H is homologous to S.

Intuitively, the idea is that the two sides of a soap film are oppositely oriented
surfaces on different sheets of Y, and the covering space W is there to make sure
that sides pair up. Homologous simply means that 74/ — S is the boundary
of a region. If one takes the N-current @) such that 0Q) = 7 H — S, then @
is a scalar density function times M. @ is intuitively the exterior of the film,
and we will denote the density function as Q(y) and call it the ezterior density
function, or just the exterior function. @ is required to be 1 on the reference
surface S and zero on the rest of the boundary of Y.
A calibrating flow is a flow ¥ in Y that at each point of M satisfies

|9 =]l <1

where i and j refer to sheets above the point. One can define the lift of ¥’ to a
vectorfield 7# in W by
(n* 0y = 7 - j,
and then simply require ||7#%|| < 1. The dual maximization problem turns out
to be
Maximize / - dA such that div & = 0 and ||7#7]| < 1.
s

The same existence theorem for covering space films holds as for paired calibra-
tions, with the same caveats. The surface S can be regarded as the source of
the flow (in analogy with the network max-flow, min-cut problem), and the rest
of the boundary of Y as the sink.



3.5 Symmetries

If the problem has symmetries, then the calibrating flow may be assumed to
share those symmetries. The action of a symmetry transformation must be
defined to include the permutation of regions in the paired calibration model
and of sheets in the covering space model, so that reference surfaces get mapped
to reference surfaces. To get a symmetric calibration, simply take any calibrating
flow and average over all symmetric transformations of it. Thus if there is a
mirror symmetry which maps a given region to itself, we may assume that the
flow for that region has no flux across the mirror. For example, figure 2A
shows the equilateral triangle divided into its six fundamental regions, labelled

Pq P1

P3 ) H P2

Figure 2: A. Symmetric regions of tripod domain. B. One unfolded stack.

A through F'. Use subscripts to denote sheets. By rotational symmetry, region
Ay is symmetric to C3 and Ej5. Including mirror symmetries, region A; is
symmetric to By, Dy, and F3. There are three symmetry classes, which can
conveniently be represented either by a single stack of triangles A1, Az, A3 on
different sheets, or by triangles A,, Bs, C on a single sheet. The single stack
is used for calculations, and the single sheet is useful for display, as in figures 4
and 5 in section 6.2. The single sheet can be visualized as folding up into the
single stack, with creases along the mirror lines. These lines (OP; and OJ in
figure 2B) will be referred to as fold lines. The edge H P, is the reference surface
for region R, i.e. the source edge with ) = 1. The edges P;.J and J P, are sink
edges with ) = 0. Since mirror symmetry along H P; maps region Rs to itself,
there is identically zero flux across edges HO and OP;, and @ values are free



to vary.

Symmetries are very useful in cutting down the size of problems. Symmetry
does not mean that all minimizing films will be symmetric (recall the case of
the cubical frame). One can get a symmetric soap film by taking a symmetric
average of a film, but the result will generally be a real film instead of an integer
film. In general, the set of minimizingreal films is a convex set, since any convex
combinations of minimizers is trivially also a minimizer. It is the extreme points
of the solution set which we are usually interested in.

4 Discrete models

For numerical calculations, the continuous problems will be discretized into a
standard optimization problem known as the “minimizing sum of norms” prob-
lem, or MSN for short. The goal of MSN is to minimize the sum of Euclidean
norms of k¥ v-dimensional affine transforms of an n-dimensional vector X, sub-
ject to p linear constraints. Our applications will have v be the dimension of
the ambient space, v = 2,3. X is a large dimensional vector representing the
solution to the problem. The primal problem is

Minimize > [|4;X — Bj| (1)
i=1

such that EX =0,

where X € R", 4, e R"*", B; ¢ R, £ € R?*", and C € R?. The dual
problem is

Maximize Z By, +c*z
7
such that S AlYi+ETZ =0, (2)

il < 1.

where ¥; € R” and Z € RP” are the variables. (The vectors Y; are not to be
confused with the covering space Y.) More general formulations are possible,
but the software available to me uses the above.

Three discretizations of the minimal surface problem will be defined here.
The first finds a piecewise linear approximation to the exterior function @ :
Y — R, and hence provides an upper bound. The second finds a piecewise
constant vectorfield, providing a lower bound on the total flux. The third uses
piecewise linear vectorfields, providing better lower bounds. The second model
is included because it is a gentler introduction to the ideas involved, although
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the third model performs much better in practice. The models are phrased in
terms of arbitrary dimension, but 1-dimensional films in 2-dimensional space
illustrate all the ideas.

In all models, the N-dimensional space M is triangulated into N-dimensional
simplices in a manner consistent with the boundary set B. Let the set of
simplices be indexed by Greek subscripts «, 3,.... Let the vertices be V =
v1, ...,k . All simplices will share the positive orientation of M. We will also
need to refer to (N-1)-dimensional faces between simplices, and these will be
indexed by ordered pairs a3. Index 0 will be used for missing simplices outside
M. Triangulations of Y and W are lifted from M. Let s be the number of sheets
in the covering space Y. In general, it is not possible to assign sheet numbers
to simplices of Y so adjacent simplices have the same sheet number, so we will
not try. Instead, the simplices of Y over a simplex of M will arbitrarily labelled
with sheet numbers, although in practice a useful assignment is made. Points
of the film boundary B will be branch points of Y. We will require that any
simplex has no more than N-1 branch points among its N + 1 vertices.

4.1 Upper bound model

We seek a piecewise linear scalar function @ on Y such that Q(y) = 1fory € S
and Q(y) = 0 for y € JY — S. The objective is to minimize the mass of a
flat (N-1)-chain H in W that projects to the boundary of such a @. H need
not be the boundary of any N-chain in W, but in this model we know H can
be represented as a piecewise constant vectorfield fintegrated over Lebesgue
measure. The problem thus is

Minimize [, 1171l

such that W#f: grad @,

_ 1 yes
Q) = {0 y €Y — S.

We will define @ by its values ¢ at the vertices vy of Y, and to be piecewise
linear on simplices. To evaluate the objective, introduce a vector f,;; for each

pair of sheets ij over simplex a of M. Assume f_;”'j = —f;ji. Then the problem
becomes
Minimize Z Z ||ﬂlj|| volume(«)
a i<j
such that grad Q) = Z fj:u-j for each simplex v and each sheet i,
J

|1 yes
Q(y)—{ 0 yeoy —s.

11



The MSN vector X consists of all the g; and all the fq;;.
Another formulation with fewer variables and constraints is to introduce

—

vectors Fg;; for 2 <1< j <'s, again with Fi;; = —Fyj;. Then the problem is

1 -
Minimi - dQ; — dQ;) + Foij l
inimize Za: Z]: Il S(gra Qi — grad Q) + Fasj|| volume(a)
such that Zgrad ®R:i=0
1 yes
Q(y)—{ 0 yeoy -5,
where Fi,y; is to be understood as Fy1; = _Ez<k Farj. Note the Fy;; are

chosen to span the nullspace of mx. The relation of the two formulations is
simply
1 -
faij = g(gT’ain —grad Q;) + Faij.

The linearity of @ is awkward around a branch point, since @ is changing
very rapidly there. Hence a modification is introduced whereby the value of @
at a branch points is not defined, but @ is defined on a simplex adjacent to a
branch point by its values on the non-branch vertices, with linear interpolation
between them and level sets parallel to the faces containing all the branch points.
That is, in barycentric coordinates with vertices vg, ..v, on the branch set,

Apt1dpt1 + -+ Avan
/\p+1 + ...+ Ay

Q(/\QUO 4+ ...+ )\NUN) =

Because the piecewise linear (Js are a subset of all possible flat N-chains,
solving the primal problem (1) gives an upper bound to the solution of the
continuous problem. The dual problem (2) solved at the same time does not
produce a feasible flow. It is only the dual problem of the discrete upper bound
problem; it is not a discretization of the lower bound flow problem.

4.2 Lower bound constant vectorfield model

Here we assume a flow that has a constant value #,; on each simplex « on sheet
t of Y. The divergenceless condition is trivial inside simplices, so we only need
to require matching fluxes across faces. Also there is the bound on the difference
of flows between pairs of sheets. The objective is to maximize flux through the
reference surface S. The result is the dual MSN problem (2):

Maximize E Upi - Aooi
faces Aqoi€S

—

such that (Uas — Upi) - Aapi = 0,

12



[|dai — taj|| < 1 for sheets i, j.

The notation gets a little awkward here, since sheet labelings are not consistent
across faces.

Unfortunately, the software available to me at the moment can only handle
bounds on the norms of single variables, not on linear combinations. So we have
to introduce vectors Waij = Ui — Uaj, and vectors i, = > ; Uai. Then

1/~
ai = — | ta _’ai' .
U 5 < + E w ])
j
Hence the problem becomes

1/- -
Maximize Z 3 <ta + Z "‘Eaij) - Agio
J

faces Aqo:€S
1 P - 1 d . -
such that S to + Z Weasj | — 3 tg + Z Wgij “Aapi =0,
J J
wa1i+waij+waj1:0 for2<i<j<s,

|| Wasj|] < 1.

The second set of constraints here is necessary and sufficient for the @q;; to be
differences of @’s. It is possible to eliminate the #’s by subtracting f/s from each
i. But in practice we will want to delete large portions of Y that are not critical
for the film, leaving ¥ to be an uneven covering space. Then the ¢ elimination
does not work. So in practice, s is really s,, depending on the simplex of M.

Solving the dual MSN problem (2) gives a feasible flow for the continuous
problem, hence a lower bound on the continuous area. The simultaneous solu-
tion of the primal problem (1) that is generated is not a feasible film, but it
should be an approximation of the optimal continuous film. The primal solution
generates a vector for each simplex pair in W, whose magnitude is the mass of
the film. For visualizing this approximate film, the film can be projected to Y
with m4.

4.3 Lower bound linear vectorfield model

Here we assume a flow that is linear on each simplex of Y. The flow variables
are a vector u,;, at each vertex of each simplex ai of Y. 7 is the vertex index
within a simplex. There is a separate vector for each simplex containing a given

13



vertex. Inside the simplex, the flow is given by linear interpolation,

N+1
u = § Artngr,
7=1

where the A; are barycentric coordinates. The divergenceless condition inside
a simplex turns out to be

E Ugir - Aair = 0;
-

where ffa” is the normal vector (proportional to area) of the face opposite vertex
7. Divergencelessness across faces can be guaranteed by requiring matching
fluxes at each endpoint of each face. The flux through a face is the same as
for a constant flow equal to the average of the flows at the vertices of the face.
Thus the problem becomes

. 1 . -
Maximize g N E Upir - Aooi
faces Aqoi€S TEAq0i

such that Z(G‘”" — Upir) 'gaﬁir =0,
T

—

(Gai'r - Jﬁz‘r) : Aaﬁi =0,

[dair = aj-|| < 1.

Again, due to software limitations, we have to introduce vectors Waijr =
Uiz — ﬁaj'r; and vectors to, = Zz Uair. Then

L/~ .
Ugir = g (ta'r + Z waij7)~
J
Hence the problem becomes

Maximize Z % Z (far + Z‘LUaz’jr) Ao
J

faceAqi0€ES TEA

T

1 — = 1 — - e
(g(ta7+zwaij7) - g(tﬁr +Zw[32]7)> 'Aaﬁi =0,
J J

such that (Z <t_;w + Z u’)’aijr) — Z <t_}3¢ + Z ujﬁijr)) 'A‘aﬁi =0,
j T j

14



'walir+waijr+wajlr =0 for 2§Z<.7< N:

[[Waijr|| < 1.

As in the constant vectorfield model, we do not want to normalize i away since
Y may be only an uneven cover of M.

As with the constant flow model, solving the dual MSN problem (2) gives a
feasible flow for the continuous problem, hence a lower bound on the continuous
area. The simultaneous solution of the primal problem (1) that is generated is
not a feasible film, but it should be an approximation of the optimal continuous
film. The primal solution generates a vector for each vertex of each simplex pair
in W whose magnitude is the mass of the film. For visualizing this approximate
film in figures 5, 7, and 8, the film is projected to Y.

5 Implementation

The software package I have used to solve MSN problems is called GOPT,
written by Knud Andersen [Andersen 1995]. T have written several programs to
convert data to and from GOPT format. One starting point for a problem is
a simple text file that lists the basic simplicial structure for Y. This simplex
file can be produced by the Surface Evolver. Other programs read the simplex
file and produce input files for GOPT. More programs reads GOPT output and
can produce Surface Evolver datafiles, PostScript files, or geomview files. All of
my programs are still in their early stages, and are changing rapidly, so are not
described in great detail here.

5.1 Surface Evolver

The Surface Evolver is used to create a triangulation of a fundamental region of
the covering space Y. I use the Evolver because of my familiarity with it and its
wide range of triangulation manipulation and visualization features. The input
to Surface Evolver is a datafile describing a fundamental region of the covering
space Y. The datafile uses Evolver features to define the initial triangulation,
source edges, sink edges, fold edges, and branch points. After Y is suitably
refined, a script in the Evolver command language, trimake.cmd, writes a file
in appropriate format for input to the next stage, tri2mps.

5.2 tri2mps

This is a program that takes a file describing a triangulation of Y and produces
a file in the standard MPS format for input to GOPT. The input triangle file
is an ordinary text file. The first several lines give data such as the number
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of sheets, vertices, and triangles. Next is a list of vertices. Each vertex is on
a separate line, with vertex number, coordinates, multiplicity (the number of
sheets incident to it), and an optional label for branch points. Next is the
edges section. Each edge is specified by edge number, the vertex numbers of its
endpoints, multiplicity, and an optional @} value of 1 for source edges and 0 for
sink edges. Then a section lists the triangles by number and the numbers of the
edges forming each triangle. tri2mps can produce MPS files for all three types
of models.

5.3 GOPT

The GOPT program processes MPS files and creates report files containing
solutions to both the primal and dual problems.

5.4 out2flm

out2flm reads the report file generated by GOPT and produces an Evolver
datafile incorporating the GOPT solution. out2flm uses an Evolver datafile
(an Evolver dump file made at the same time trimake was run) and merges
in the appropriate data. For the upper bound model, each vertex z coordinate
is set to the value of the exterior function @) there, and a film mass for each
triangle is derived from the dual solution. The dual solution actually has a
mass for each pair of triangles in a stack (corresponding to the bound on the
magnitude of the difference of the @ gradients), and out2flm gives this mass
to each triangle of the pair. For the lower bound model, each triangle gets a
flow vector and a film vector. For the linear flow model, each triangle gets the
average of the three flows at its corners, and the total of the three film masses.

5.5 trim.cmd

The output of out2f1lm can be loaded back into the Evolver. Zero mass triangles
along the source and sink edges can be removed with a trim command script.
This command identifies zero mass triangles adjacent to the source, deletes the
triangle, and declares the new exposed edges to be source edges. It does likewise
along the sink edges. The result is a covering space with an uneven covering of
the base space, but the models are set up to be able to handle that. Figures 9
and 10 shows the result of trimming. Trimming is very useful in reducing the size
of the numerical problem, particularly at higher refinements. Trimming can’t
hurt the upper bound, since any legal exterior function on the trimmed space
can be trivially extended to the original space, but trimming can give an invalid
lower bound, since it is not guaranteed to be possible to extend vectorfields.
Trimming is still very useful in the lower bound model when exploring to find
an unknown film.
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5.6 ps.cmd

This contains Evolver commands to produce PostScript files of either the flow
or the film. Figure 4 is an example. It spreads the sheets of Y over the page
automatically.

5.7 starps.cmd

This is basically the same as ps.cmd, but the sheets are arranged as desired by
the user. This is used to produce the single-sheet layouts in figures 4, 5, and 7.
Transformation matrices for each sheet have to be hand-coded into starps.cmd.

5.8 Higher dimensions

There is a similar set of programs written for films in three dimensions, although
they are written to be able to handle any dimension. These require the use of the
simplex model of the Evolver. The main difference from the pure 2-dimensional
case is that edges (faces, here) are not available. Hence vertices are labelled
according to whether they are on the sink or source. Branch points can be on
both. Which simplex (N — 2)-dimensional faces are sink or source faces has to
be deduced from this information by sim2mps. The simmake Evolver command
script writes a simplex datafile for input to sim2mps.

sim2mps takes an input simplex file and produces an MPS file for GOPT.
At the moment, the only model supported is the lower bound linear flow model.
The simplex file format is a simplified version of the triangle file format.

out3flm reads the GOPT report, and can produce several types of output.
One is an Evolver datafile, with film and flow data merged into a previous
Evolver dump file. out3flm can also produce files for the 3D visualization
program geomview [Levy et al. 1992], one file for the flow, one for the film,
and one for the simplicial skeleton. PostScript files can then be obtained from
geomview.

5.9 Reliability of results

In numerical calculations, there is always the question of the accuracy of results,
and when one should believe one has found the solution. In one sense, the cali-
bration results are extremely reliable for estimating the mass of the minimizer.
The upper and lower bound discrete models provide strict bounds theoretically.
GOPT gives a ”duality gap” for each discrete problem, so one has strict bounds
on the true objective value of the discrete problems. Further, one can check
that the solutions given by GOPT do indeed satisfy the necessary constraints.

On the other hand, the location of films found numerically is not so certain.
There is no necessity for the current solving the discrete approximation to be
near in flat norm to the true minimizer. I know of no theorems that restrict the

17



location of minimizers, except the classical minimal surface barrier theorems
([Morgan 1995, 10.4]), which are usually not very informative for the covering
space model. However, GOPT uses an interior point algorithm which tends to
converge to the center of the solution set of currents. Hence the GOPT solution
should be a superposition of all possible solutions. So far no situations have
turned up where the numerical solution is misleading.

6 Results

This section contains some experimental results. In the tables below, “Step”
refers to the refinement level. An ‘x’ after the step means trimming has been
done. “Vert.” and “Tri.” are the total numbers of vertices and triangles for
all sheets. The GOPT output provides the rest of the columns: “nnorm” is
the number of Euclidean norms in the MSN problem, “n(x)” is the number of
variables in the primal problem, “nleq” is the number of equality constraints,
“objective” is the value of the objective function (total flux or mass), “gap” is
the difference between GOPT’s primal and dual solutions of the particular MSN
problem, and “time” is GOPT solution time in seconds on an SGI Indigo 2.

6.1 Tripod upper bound, 2D

The tripod is the minimal 1-dimensional film connecting the three vertices of
an equilateral triangle. It is pictured in figure 1. For numerical purposes; the
domain is taken to be only the convex hull of the vertices, i.e. the equilateral
triangle. Further, symmetry is used to reduce the problem by a factor of six.
There are three regions, hence three sheets. The full equilateral triangle is
initially divided into its six symmetric fundamental regions, each a 30-60-90
triangle, making 18 triangles on all sheets together. By sixfold symmetry, each
stack of triangles is equivalent, so we need to solve only one stack. The minimum
of the objective in the continuous case is known to be 1.

Step | Vert. | Tri. | nnorm | n(x) | nleq | objective gap | time
1 5 3 3 1 0| 1.2159728 | 1e-08 | 0.00
2 12 12 12 11 21 1.0399747 | 1le-11 | 0.04
3 35 48 48 52 9 | 1.0187818 | 1le-11 | 0.17
4 117 | 192 192 | 218 35 | 1.0087497 | 3e-11 | 1.19
5 425 | 768 768 | 886 | 135 | 1.0040750 | le-10 | 5.35

Table 1: Results for upper bound model of tripod.

The conclusion to draw here is that the upper bound model converges very
slowly, at least as presently set up. The basic problem is that a continuous
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piecewise linear function is trying to approximate a step function. Faster con-
vergence could probably be obtained by selective refinement of key regions. It
may also be necessary to exert much more control over the directions of the
edges in the triangulation, to permit @ to bend the way it wants. Due to its
relatively poor performance, the upper bound model is neglected for the rest of
this paper.

6.2 Hexagon

The integer film joining the vertices of a regular hexagon is known to consist of
five of the hexagon sides. See figure 3. However, all attempts to calibrate it have
previously failed. Does this very simple film have a complicated calibration, or

S1
L]
Se Sy
L] L]
S5 S3
L] L]
S4
A B. C

Figure 3: A. Film spanning hexagon. B. Reference surfaces. C. Fundamental
region.

is there some fractional density film of lower mass? The paired calibration set-
up for the hexagon has six regions, and the reference surfaces are the six sides,
S1,...,56, shown in figure 3B. Using the 12-fold symmetry of the hexagon, the
problem reduces to one stack of six triangles, shown in figure 3C. The stack
unfolds to a single sheet shown in figures 4 and 5. In figure 4, edge AB is the
source edge, edges BC,CD, DE, EF, FG are sink edges, AO,OG are zero flux
edges, and the other edges are folds.

The hexagon was run with both the lower bound constant flow and lower
bound linear flow in order to compare the performance of the two models. Re-
sults are in tables 2 and 3. If the integer film is indeed the minimum, the answer
should be 5/12 = 0.4166666 . . ..

The integer film certainly seems to be an absolute minimum. The flow from
step 3 of the linear model is shown in figure 4, and it is not something to design
by hand. Figure 5 shows the corresponding film. Note that the film shown is the
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Figure 5: A. Calibrating flow on one sheet of the hexagon. B. Film distribution.

Step | Vert. | Tri. | nnorm | n(x) | nleq | objective gap | time
1 20 24 60 | 117 8 | 0.3993794928 | 2e-11 | 0.36
2 63 96 240 | 466 32 1 0.4114536593 | 2e-11 | 2.25
3 221 | 348 960 | 1860 | 128 | 0.4159658500 | le-10 | 9.76
4 825 | 1536 3840 | 7432 | 512 | 0.416663774 | 3e-09 | 71.24

Table 2: Results for lower bound constant flow model of hexagon.

Step | Vert. | Tri. | nnorm | n(x) | nleq objective gap | time
1 20 24 180 337 23 | 0.4140262160 | 3e-11 1.30
2 63 | 96 720 | 1346 94 | 0.4166362460 | 8e-11 | 7.50
3 221 | 348 2880 | 1860 | 128 | 0.4166666667 | 3e-10 | 43.73

Table 3: Results for lower bound linear flow model of hexagon.
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symmetric film, the average of all six integer films. It has density 5/6, coming
from 5 interface pairs of density 1/6 each. Thus figure 5 shows film density 5/6
along edge AB, and the other projections of the pairs give density 1/6 along
the sink edges.

The linear flow model is obviously much more efficient than the constant
flow model. Hereafter, all examples will be linear flow.

6.3 Crossed tripods

This is an example where the minimal integer film is not the minimal real film.
It is somewhat contrived, but it is the 2-dimensional analog of what happens in
the octahedron. Suppose the minimal real film joining the vertices of a regular
hexagon were as shown figure 6. These are in fact better than figure 3A for a
large hexagon in the hyperbolic plane. Any calibration would have to calibrate

Figure 6: Hypothetical minimal films spanning the hexagon.

both simultaneously. In particular, at the center it would have to calibrate
two tripods simultaneously, as in figure 7A. The problem in this example is to
just consider the two tripods simultaneously. The set-up consists of two sets
of tripod problems rotated by 60° with respect to each other (see figure 7B),
i.e. “crossed tripods”. There are six vertices of a regular hexagon, but each
reference surface is a pair of sides, joining alternate vertices. One tripod set-
up has reference surfaces Sy, S5, S3, and the other has S4, S5, Ss. The minimal
integer film is presumably two tripods (figure 7A). A couple of years ago, I found
the fractional density film shown in figure 8A. It has all films of density 1/2,
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Figure 7: A. Crossed tripods. B. Reference surfaces.

and less mass than the crossed tripod. The linear flow model gave the results
shown in table 4, using basically the same symmetries as for the hexagon. A
step with an ‘x’ is a trimmed domain.

Step | Vert. | Tri. | nnorm | n(x) | nleq | objective gap time
1 8 6 45 79 5 | 0.49487172015 | 2e-11 0.30
2 21 24 180 326 22 | 0.49487151606 | 2e-11 1.65
3 65 96 720 | 1324 92 | 0.4954586682 | 2e-10 6.02
4 225 | 384 2880 | 5336 | 376 | 0.4959077068 | 6e-10 | 48.53

4x 78 | 119 429 836 | 245 | 0.49590770677 | 3e-11 3.94
5x 238 | 412 1428 | 2885 | 903 | 0.4961183292 | 2e-10 | 20.30
6x 679 | 1232 4416 | 8987 | 2719 | 0.496216250 2e-09 | 118.54
Tx | 1981 | 3728 | 12060 | 25133 | 8655 | 0.496265 le-06 | 342.42

Table 4: Results for lower bound linear flow for crossed tripods.

The flow for step 6x is shown in figure 9 for one sheet. The source edges are
ABC, the sink edges CDEF G, and the zero flux edges GOA. Figure 10 shows
the film as produced by step 7x. The film appears somewhat smeared out in
the bottom part of figure 10, but that is probably due the discretization. The
figure shows that there are three equal films coming out of vertex C| so each
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Figure 8: A. Best found by hand. B. Best found by computer.

has density 1/3. By putting the whole film together from this one symmetric
piece, one gets the film shown in figure 8B, which improves over 8 A. The Evolver
gives a total mass for 8B of 5.955896492278787, which corresponds to a mass of
0.496324707689899 for one symmetric piece. Extrapolating the table results to
infinite refinement gives something very close to this, so it looks like 8B is the
absolute minimum.

6.4 Octahedron

At least five different integer films can span an octahedral frame. Of these, the
one with the smallest area is shown in two orientations in figure 11. It consists
of flat pieces, with a tetrahedral point in the center. The two views show the
two different orientations possible for this film. Recall that any calibration
would have to calibrate both these films simultaneously, hence calibrate two
superposed tetrahedral points. This is the 3-dimensional version of the crossed
tripod problem. Calibrating by hand has failed, and attempts to find a 3-
dimensional analog to figures 8A or 8B have also failed. So we turn to the
linear flow model. There are 8 regions. Using the 48-fold symmetry, we need
only compute the flow on 1/6 of one face. The results are tabulated in table 5,
and the film from step 3 is shown in figure 12. The corresponding mass of the
integer density film is 0.235702260395516, but that is not close enough to claim
calibration. The film in figure 12 looks like a cloud of surface bits. It might be
approximating the integer film, but it might be different.

This example does have an unexploited symmetry, namely homothetic sym-
metry. If there is a calibration, there will be one which is invariant radially, in
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Figure 9: Crossed tripod flow on one sheet of a trimmed domain.

time
7.24
126.30
1523.53

gap

2e-10
1le-09

objective

0.23231724054 | 2e-11

0.2341254003
0.235256244

nleq

11
93
758

n(x)

307
2461
19702

nnorin

112
896
7168

Tetra.

96
912

10
63
165

Step | Vert.

Table 5: Results for lower bound linear flow for crossed tetrahedra.
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Figure 10: Fundamental region of minimal real film for crossed tripod problem.
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Figure 11: Presumed minimal film on octahedron.

Figure 12: Unfolded fundamental piece of octahedral film from step 3.
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the sense of
(z) = v(cx)

for any ¢ > 0. This cuts the dimension of the problem from 3 to 2, permitting
higher refinements of the triangulation. I have implemented this conical model
in a lower bound linear flow, the details of which are omitted here. The objective
value for crossed tetrahedra is 0.353553390593274. Of all the refinement schemes
tried, the best series of results is in table 6. This gets close to the crossed
tetrahedra value, but one couldn’t claim it is converging to it.

Step | objective

3 0.35354431624
4 0.35354631148
5 0.35354758418
6 0.35354843

Table 6: Results for conical symmetry lower bound linear flow for crossed tetra-

hedra.

Also I have tried a discretization of the upper bound model dual to the
conical lower bound, but without getting below the crossed tetrahedral value.

The octahedron is the example that motivated all this numerical work, but
the octahedron film must still be regarded as unresolved.

7 Related work

Many schemes have been proposed for numerically calculating minimal surfaces,
but very few require no assumption on the topology of the surface, and of those
few none can handle soap film singularities.

John Sullivan [Sullivan 1990] proposed a scheme in which the surface span-
ning a polygonal boundary is chosen from a large set of small polygonal surface
elements of various orientations and locations. The actual selection of the set is
done by a max-flow min-cut algorithm for a flow linking the boundary. Since an
actual spanning surface is found, the scheme provides an upper bound on the
area of the smooth absolute minimizer. The accuracy is limited by the avail-
able orientations of the set of surface elements, which is similar to some of the
limitations in the upper bound schemes of this paper.

Harold Parks [Parks 1977, Parks 1986, Parks 1992] developed a scheme in
which minimal surfaces are the level sets of a function of bounded variation that
minimizes the L; norm of its gradient in a convex domain with given boundary
values. The implementation [Parks 1992] represents the function as continuous
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piecewise linear on a simplicial decomposition of the domain. The discrete gra-
dient norm minimization turns out to be the same minimizing-sum-of-norms
problem that appears in this paper, although the algorithm and software used
to solve it are different. The method finds a spanning surface, hence an upper
bound on the true minimum area. The great advantage of this method is that
by representing the desired surface as just one level set among many, an extra
order of smoothness is gained. The orientation of the simplicial decomposition
is not critical, since the level set can cut across a simplex in any orientation.
The main limitation is that it can only handle a boundary curve on the bound-
ary of a convex domain, and it cannot handle unoriented surfaces or soap film
singularities, but within those limitations it would probably be my method of
choice.

Harold Parks and Jon Pitts [Parks and Pitts 1995] have another scheme to
handle surfaces on arbitrary boundary curves, e.g. linked and knotted curves.
The idea is to define some arbitrary reference surface that spans the boundary
and then minimize the L; norm of the gradient of a function of bounded varia-
tion that has a jump of magnitude 1 across the reference surface. There will be
a compensating jump across the minimal surface, and the area of the minimal
surface is the L; norm of the gradient. In the discretization, the function is
continuous and piecewise linear on a simplicial decomposition of some domain
enclosing the boundary curve and reference surface, except for discontinuities
across the reference surface. Again, the discrete minimization problem is mini-
mizing a sum of norms. The accuracy of the method suffers in comparison with
the convex domain scheme because here a discontinuous function with a jump of
1 at the minimal surface is being approximated by a continuous function. But
there seems to be no obvious way to embed the surface in a foliation of minimal
surfaces in order to gain smoothness of the bounded variation function. Essen-
tially, this scheme is the same as the upper bound model of section 4.1 of this
paper, with two regions.

8 Conclusion

One would wish that every problem turned out as clearly as shown in figure
10, but the examples show the need for many practical improvements. Even
simple problems rapidly reach the limits of current computers. Improvements
will undoubtedly be made to general optimization software such as GOPT. But
cutting down the size of the problem will be far more important. The linear
flow model is more efficient than the constant flow models, and higher order
models should be even better. The immediate problem is how to fit higher
order problems into the MSN framework. How does one guarantee a bound on
the magnitude of a quadratic flow using Euclidean norms at a finite number of
points? In the upper bound model, can a discrete function space be found which
permits arbitrarily oriented step functions? Trimming is another technique that
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can be improved. Currently only simplices adjacent to source or sink edges are
trimmed. As figure 10 shows, there can be large interior areas with no film.
These could be excised and replaced with a flux conservation constraint. There
need to be methods of selective refinement. There also need to be “barrier
theorems” that can restrict the film to a narrow region.

Although only soap films are discussed in this paper, the techniques extend
to many related problems involving surfaces. The area objective function may
be replaced with any positive definite quadratic form of the surface normal, and
vector integrals over the surface may be included. This permits surfaces of dif-
ferent surface tensions, Riemannian metrics, gravitational energies, and contact
angles on walls. Linear constraints may be added, volumes for example. All
these will be added to the software in the future. However, a fundamental limi-
tation will remain, that only real film minima can be treated. Thus one cannot
use these techniques to solve bubble clusters, because the real film minimizer
does not exist. But enough has been demonstrated to show the beginnings of a
general “soap film technology.”

Software Availability

The GOPT package is available from Knud D. Andersen, kdabeta.dou.dk.
There is no charge for academic use. The Surface Evolver is available by anony-
mous ftp from geom.umn. edu as /pub/software/evolver/evolver.tar.Z. This
is a compressed tar file that contains C source code, makefile, sample datafiles,
and a manual in TeX dvi format. A PostScript version of the manual is available
from the same site as /pub/documents/preprints/GCG71/manual-1.98.ps.
Other files and programs mentioned in this paper have not been publicly posted,
but will be made available to interested parties. The geomview visualization
program is also available from geom.umn.edu.
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