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Abstract.

Weierstrass representations are given for minimal surfaces that have free boundaries
on two planes that meet at an arbitrary dihedral angle. The contact angles of a surface on
the planes may be different. These surfaces illustrate the behavior of soapfilms in convex
and nonconvex corners. They can also be used to show how a boundary wire can penetrate
a soapfilm with a free end, as in the overhand knot surface. They should also cast light on
the behavior of capillary surfaces.
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1. Introduction.

The shapes of soap films have been studied by mathematicians for centuries (see [NJ]
for an extensive summary). But not everything is yet known. F. Almgren once tried to
prove that the boundary wire of a soap film could have no free ends, in line with the
pervasive mathematical principle that a boundary has no boundary. He failed by finding
a counterexample: the soap film that forms on a wire in the shape of an open overhand
knot. What exactly happens at the points where the boundary wire leaves the soapfilm?
A physical wire has a nonzero diameter, so the boundary of the soapfilm is really on a
tubular surface, not a curve. Given that three surfaces must meet at angles of 27/3 and
that the soapfilm must meet the wire surface at right angles, one can figure out that the
soapfilm looks like figure 1. A triple line comes in from the upper right and curves to hit
the wire perpendicularly. Above the triple line is a more or less flat vertical “wall” with
its left edge on the wire. Below the triple line, the surface forms a “skirt” around the wire.
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Figure 1. Side view of the free end of thick wire boundary going through soapfilm.
Note that all surfaces and the triple line meet the wire at right angles.

Is the thickness of the wire essential? In 1976, Almgren stated in [AT] that in reference
to the overhand knot, “No mathematical soapfilm-like configuration can form on a similar,
infinitely thin frame that has two free ends.” He later realized that one could, but did not
find the correct configuration.

In my own investigation of the Opaque Cube Problem [BK1], I came across similar
configurations of boundary wires going through surfaces. I set out to see what happened
in the case of the boundary wire being a true zero diameter line. I expected that for
a tame boundary, the surface would be made up of tamely curving surfaces with tamely
curving triple lines and some isolated tame point singularities. Probably the wire would go
through the surface with some kind of cusp. But by contemplating the general properties
of Weierstrass representations for minimal surfaces satisfying the appropriate boundary
conditions, I realized that the “skirt” has to run along the wire for a short distance. I
used a program of mine, called the Surface Evolver [BK2], to compute an example to
verify my calculations, and found that I had to magnify by a factor of 100,000 to see
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the detail! Figure 2 shows this close-up view. This disparity in scale with the boundary
wire specifications is amazing. Past results on minimal surfaces have always been on the
theme that the surface is at least as smooth as the boundary. My results don’t technically
contradict that, but they were certainly unexpected.

Figure 2. 100,000 fold magnification of a zero diameter boundary wire leaving a
soapfilm. Slightly oblique view. From my Surface Evolver program.

This paper contains the results of my investigations of the problem and its general-
ization. The general problem I study here is that of a minimal surface that has part of
its boundary on two half planes meeting in a corner at an arbitrary dihedral angle. The
surface meets each plane at a fixed contact angle, which may be different on the two planes.
I find the general forms of the Weierstrass representations at critical points on the corner,
and some complete sample solutions. Some numerical results are given in case E below.
The thin wire free end problem can be subsumed in these results by viewing the “wall”
part of the surface as part of a half-plane whose sides form a corner with interior angle of
27 with the “skirt” being a surface with contact angle 7/3 on the wall.

Much previous work on minimal surfaces in corners has been focused on the Dirichlet
problem of a given boundary. Beeson [BM] treated the case of a corner formed of two
straight lines. Elcrat and Lancaster [EL1,EL2] investigated surfaces over a non-convex
quadrilateral in the non-parametric case, which is equivalent to having walls above the
sides of the quadrilateral.

For the Neumann problem, previous work on surface shapes in corners has been done
for constant (or at least continuous) contact angle «y for capillary surfaces viewed as graphs
of functions.Minimal surfaces wrapping around the edge of a half-plane with contact angle
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7/2 on both sides have been studied in [HN]. In the case 7 — 2y < a < 7, Simon [SL]
showed the function for the surface is of class C!, and Tam [TL] showed additionally that
for &« = m — 27 the normal vector is continuous. If @ = 7, then there is just a featureless
flat wall. Korevaar [KN] showed that if @ > 7 then there exist surfaces whose functions
are discontinuous at the corner. Lancaster [LK]| derived the possible behavoirs of radial
limits at a non-convex corner. Examples of all of these types of behavior will be seen in
this paper.

2. Preliminaries.

First, we will set up the geometry of a corner. Let the two half-planes of the wall be
designated A and B, and let the corner line L be their common edge. Let o be the angle
between the planes, measured on the side with the surface. The range of v is 0 < o < 27.
The upper limit is physical, not mathematical. If one wants to visualize space as wrapping
around L indefinitely (i.e. a simply connected covering space of the complement of L),
then all the analysis in this paper will still apply.

The curve where the surface meets the wall is the trace of the surface. In order for the
notion of contact angle to make sense, one side of the surface will be designated the outside
and the other side the inside. The contact angles y4 and yp are measured from the inside
of the surface to the wall. Their range is 0 < y4,vp < 7. Without loss of generality, we
will take y4 > yp. For contact angles of 0 or 7 there can be no trace on a half-plane, but
there may be a trace along the corner.

Physically, a contact angle arises when the surface is the boundary between two fluids
(air and water, for example) which wet the wall with different surface energies. The
cosine of the contact angle is the ratio of the difference in wall surface energies to the
surface tension of the surface. Thus the problem in this paper corresponds to two different
materials and two different fluids meeting at a corner. That the surface is a minimal surface
implies that there are no external forces such as gravity, and that there are no constraints
such as fixed volumes.

A minimal surface can be parameterized with a complex variable by the Weierstrass
representation. Let f(u) and g(u) be any meromorphic functions of a complex variable u.
(My notation mostly follows [OR].) Then a parameterization of a minimal surface in R?
is given by the real parts of complex integrals:

T = 9‘3/(1 —g°) fdu,
=R / i(1+ g% fdu, (1)
z= %/QQfdu.

The value of g can be interpreted as the normal to the surface via the Gauss map, which
identifies a complex value with a unit vector by stereographic projection. In particular,

the normal vector is
N ( 2Rg 239 g|* — 1)
P+ g1 g+ 1)

(2)
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The sphere of unit normals will be referred to as the Gauss sphere, and the image of the
surface under the Gauss map will be its Gauss image. The function f is a conformal
factor. If the surface is oriented so that ¢ = 0 at a point, then dz — idy = fdu at the
point, so for f(0) positive real, the positive real u axis maps to the positive x axis and
the positive imaginary u axis maps to the negative y axis. If ¢ = oo at a point, then
dx +idy = —g* fdu there, so f needs to have a root of high enough order to tame the poles
of g. The orientation of the mapping for other g can be found by parallel translating the
tangent plane of the Gauss sphere along a meridian from the south pole to g.

In this paper, f and g may be functions of various parameters. The same function
names will be used in all cases. Thus if u and w are different parameters, g(u) and g(w)
are technically different functions, but have the same value when v and w correspond
to the same point on the surface. Since f(u)du is a differential, the proper relation is
f(u)du = f(w)dw, or f(u) = f(w)(dw/du). Where there is any ambiguity, the parameter
will be explicit. Often the parameter will be g itself.

The traces on each half-plane map to the Gauss sphere on circles of central angles 4
and yp around the normal vectors of the planes. These will be referred to as the Gauss
circles of the half-planes. When the trace goes along the line L, the Gauss map goes along
a great circle perpendicular to L, which will be the Gauss circle for L. Not all of the
Gauss circle for L represents stable orientations. Some orientations are unstable against
perturbations onto the half-planes.

The condition on f(u) needed to guarantee that the trace be on a half-plane is that
the trace tangent vector be perpendicular to the normal vector. If N = (N, Ny, N,) is

the normal and dz is the trace tangent in terms of differentials, then N -dz = 0, or

R[((1=¢*)No +i(1 4 g*)Ny + 2gN;) fdu] = 0. (3)
This will be referred to as the trace condition for the surface on a half-plane. A special
case will be used often below:

Lemma 1. If the Gauss circle of a plane passes through the north pole of the Gauss
sphere and gq is any point on the Gauss circle, then the trace condition (3) is satisfied if
and only if S[(g — g0)*f(g)] = 0 for all g on the Gauss image of the trace.

Proof. Let v be the contact angle and let # be the argument of the plane normal N ,
so that

—

N = (siny cos #,sin 7y sin €, cos ).

Then the trace condition (3) becomes
R[((1 - g*)sinycosf+i(1+ g*)sinysind + 2gcosy) f(g)dg] = 0,

or

R [(siny(e"” — e g?) + 2cos7) f(g)dg] = 0.
In the g plane, the Gauss circle becomes a straight line through g = e cot y with direction
angle 0 + m. Parameterize the line as g = e¢®(coty + iv), so dg = ie®dv. Plugging in,
simplifiying, and dropping real factors leaves

3 [e*f(9)] =0,
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which, for g and gy on the line, is equivalent to

S [(9—90)f(9)] = 1

The strip of surface next to the trace maps to a strip in the Gauss sphere. One can get
a rule to see which side of the Gauss trace the image is on. Since the surface is a minimal
surface, its sectional curvatures are of opposite sign at any point. Hence if the surface is
on the convex side of the trace (for v < 7/2), the Gauss image is outside the circle, and
vice versa. For v > 7/2, the concave side of the trace is mapped to the inside of the Gauss
circle (the inside being the side where the half-plane normal is).

The problem of the shape of the surface at the corner can be conveniently viewed in
terms of the Gauss map: Given the contact angles and the angle between the planes, how
does the trace get from the Gauss circle for A to that of B? In general, the trace can
wander around on the circles for A, B, and L, doubling back on itself, and being generally
complicated. There are many ways to get from one circle to another, but only some of
them give traces on the proper sides of the half-planes. Other choices than those discussed
below lead to traces on the extensions of the half-planes beyond L or on the back sides of
the planes. In this paper, I will not try to discuss all possible behaviors, but I will discuss
representative ones.

The bulk of this paper considers various cases categorized by the angle a between the
walls. Bear in mind that one angle may belong to several cases, and which case applies
will depend on the boundary conditions for the rest of the surface away from the corner.
Also each case may have variations differing in orientation.

The procedure for finding explicit representations starts first with choosing the trace
path and Gauss image in the Gauss sphere. Second, a convenient parameterization domain
is chosen. Often this can be the Gauss image itself. Third, knowing ¢ on the domain, it
remains to find f. We know g and arg(du), so the trace condition (3) boils down to a
constraint on arg(f). That is, Slog(f) is given on part of the boundary of the domain.
Likewise, when the trace lies along L. dz is automatically perpendicular to the surface
normal N so the only additional condition needed is that dx be perpendicular to some
other convenient vector, which again leads to a prescribed value of Jlog(f) on part of
the domain boundary. Jlog(f) can be extended many ways to a harmonic function on
the domain, which then leads to the complex function log(f) and then to f itself. So the
existence of surfaces is not a problem, but actually finding explicit representations may be.

The general form of the Weierstrass representation at a critical point P on the trace
on the corner will be standardly parameterized by a complex parameter w in the upper w
half-plane. The strategy for finding the general form at P will be: First, orient the corner
so that the Gauss circles involved are in convenient positions. Second, figure out the image
of the trace and surface in the g plane. In general, the point P will correspond to a gg
at the intersection of two Gauss circles. Third, find a formula g(w) mapping the upper
w half-plane to the Gauss image with ¢g(0) = go. The Gauss image may wrap arbitrarily
many times around g, which introduces arbitrary factors of w into g(w). Fourth, use the
trace condition via Lemma 1 or an equivalent argument to get a reality condition on f(w)
on the real w axis. Fifth, use the angle subtended by the surface around P to determine
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the leading power of f(w). Finally, write f(w) in terms of an arbitrary function h(w) that
is analytic at w = 0, is real on the real w axis, and has h(0) positive.

To study the smoothness of the surface and trace at the point, we will change from
parameter w to a parameter ¢ such that f(() is nonzero at P. Then the leading terms in
the asymptotic expansion of g(({) will reveal the order of continuity of the normal vector
at P. The surface and trace will have order of continuity one higher. The Gauss map g(w)
will include arbitrary factors of w, and the more factors, the smoother the surface. The
extra factors are not the general case, however.



3. Case At a>71+v4+ 7B

This case is illustrated by figure 3. The corner angle is large enough that the Gauss
circles of the half-planes are disjoint. In this type of surface, the Gauss map of the trace
goes along the Gauss circle of L to get from one circle to the other. This means that the
trace on the wall (moving from left to right in figure 3) curves down to become tangent
to L at @, runs down L a ways to R, turns around and runs back up to S, and finally
curves off toward T'. The trip along L is necessary to let the surface normal rotate, since
the half-planes can have no common surface normal. It is this case with o = 27 and
74 = vB = /3 that corresponds to the free end of a wire coming out of a soapfilm, shown
in figure 2.

A

Figure 3. Case A: a > m+ v4 + vp. Upper, surface trace. The trace runs along the
corner from Q down to R and up to S. Lower, Gauss map.
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To find the general form of the Weierstrass representation at I?, orient coordinates so
that gr = 0 and corner L lies along the y axis, making the Gauss circle for L lie on the
real axis of the g plane. The trace condition for f(g) on L can be taken to be dz =0 or
R[gf(g)dg] = 0 on the real g axis, or R[f(g)] = 0. Take the Gauss map in the upper w
half-plane to be g(w) = w'*?* &k > 0, which wraps the Gauss image k times around gg.
Recalling that f(g) = f(w)/(dg/dw), we get Rf(w) = 0 on the real w axis. Hence f(w) is
analytic at w = 0. Because the surface subtends angle 27 at R, the leading power of f(w)
must be w. For the trace to run to the left of R, the leading coefficient must be positive
imaginary. Thus the general Weierstrass representation is

g(w) = w ¥, f(w) = iwh(w),
where (as always in this paper) h(w) is real-valued on the real axis with h(0) positive. For
smoothness, take ¢ = w?, so that g({) = ¢1/2+k Thus the surface normal is of class C*-1/2
and the surface and trace are of class C*t1:1/2 The surface curves away from the corner
on the opposite side of R from the trace like
2 |y|3/2+k:.

To find the general form at @ (or at S), orient the corner so that the Gauss circle for
A passes through the north pole of the Gauss sphere and is in the z > 0 half-space, and L
again lies on the y axis. From the z component of formula (2) it follows that gg = cot y4.
In the g plane, the Gauss image is bounded above by the real axis and on the right by
the line Rg = gg. The trace condition on f(g) is again Rf(g) = 0 on the real axis and, by
Lemma 1, & [(g — gQ)Zf(g)] = 0 for Rg = gg, or If(g) = 0. The general form for g(w) on
the upper w half-plane is g(w) = g¢ — w'/?+2% Hence Rf(w) = 0 on both halves of the

w axis. Since the surface subtends angle 7 at @), the leading term of f(w) is a constant.
Thus the general Weierstrass representation is

g(w) = coty — wt/2+2k, f(w) = ih(w).

For smoothness, take ( = w, so that ¢(¢) — go = —(1/2+2k Thus the surface normal is
of class C?%1/2 and the surface and trace are of class C*+11/2 The general shape of the
trace on the half-plane as it approaches @ is
Jaf o [2] ox [y [P/,
Exact solutions for the entire corner can be found for a = 27, which corresponds to
the surface wrapping around the edge of a half-plane. To get a nice domain, orient the
half-plane so that it is the z = 0, = < 0 half-plane with side A on top and side B on the

bottom. In the g plane the domain is in an annulus between the Gauss circles. The radii
of the circles can be calculated from the values of g at points @ and S using (2):

-1
+1

o

_1 g
=CcoSv4,
1 YA p

@M

g
g

= —cosYp,

o
o



SO
9o = cot(ya/2), gs = tan(ygp/2).

For the parameter, take w = log g. Then the domain in the w-plane is a half-strip.
The trace condition for the entire trace may be taken to be dz = 0 or R[2g(w) f (w)dw] = 0.
Since g(w) = e, this means that on the left and right edges of the domain (where dw
is imaginary) we have J[e" f(w)] = 0. On the lower edge dw is real, so R[e"” f(w)] = 0.
Hence e" f(w) must have zeroes at () and S (poles would send the surface off to infinity).
Furthermore, to get the turnaround at I, there must be a zero at some wg between () and
S. By the reflection principle, e f(w) must be periodic in the real direction. One way to
do all this is

f(w) =Ce "sin (QW—w — s ) \
wg —ws
where C' is an arbitrary real constant which just sets the scale of the surface.

If e” f(w) is real on the vertical line through wg (as it is in the above solution), then
dz = 0 on this line and it maps to the = > (0 extension of the half-plane, and the angle the
surface makes with the extension is constant. Thus the solution can be decomposed into
two case E solutions with a = 7.

This case illustrates one of the two possible behaviors that Lancaster [L] derived for
radial limits at a non-convex corner for a discontinuous trace. If in figure 3 the z,y plane
is endowed with polar coordinates r, # with origin at the corner, plane A at § = 0, and
plane B at § = «, and the surface is represented as z = f(r,0), then the radial limit Rf(0)
is

Rf(60) = lim f(r,0).
' r—0+
The behavior according to [L] is that the radial limit is constant on an interval of #, then
monotone decreasing, then constant for interval 7, then monotone increasing, then finally
constant. Here there is a 6y such that

2Q fOI‘OSQS’YAv
decreasing, for y4 < 8 < 0y,

Rf(6) =< zg, for 0y < 6 < 0y + ,
increasing, for 0y +7 <0 < a—yp,
29 fora—yp <0< a.

The direction of 8y is perpendicular to L and gg.
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4. Case B: a =714 v4 + vB.

This case is illustrated by figure 4. The two planes have exactly one possible common
surface normal and the Gauss circles meet tangentially. In this type of surface, the Gauss
map of the trace goes from one circle to the other where they contact. This means that
the trace on the wall (moving from left to right) curves down to become tangent to L at
R, then turns around and runs back up, curving off toward 7. The trace does not run
along L for any distance.

A

Figure 4. o = 7+ v4 + vp. Upper, surface trace. The trace is tangent to the corner
where it crosses, but it does not run along the corner. Lower, Gauss map.

The only critical point is R. To study the surface around R, orient the corner so that
L is the y-axis and the common normal (at R) points vertically upward and half-plane A
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is in the positive = half-space. Then the Gauss circles pass through the north pole of the
Gauss sphere and the domain in the g plane is the strip —cotyp < Rg < cotys, with
gr = +iocc. By Lemma 1, the trace condition on the line ®g = cot y4 can be taken to be
S[(g — coty4)?f(g)] = 0, which is equivalent to If(g) = 0. Likewise, Sf(g) = 0 on the
line Rg = — cot yp. In the upper w half-plane, define the Gauss map to be

—2k cot y4 + cotyp
Xis

g(w) = iw log w — cot yp.

This wraps the Gauss image k£ times around the north pole with the positive w axis mapping
to the A trace and the negative w axis mapping to the B trace. The trace conditions for
f on the real w axis become

] |
3/(g) =3 [f(w)d—ﬂ =3 [f(w)cot et =

which reduces to ®f(w) = 0. The surface at R subtends an angle of 27, so
g(w)? f(w)dw x wdw,

which means f(w) has a zero of order 4k + 1. Hence the general Weierstrass representation

18
cotya + cotyp

(s

g(w) = w2k 4

fw) = iw* 1 h(w).

log w — cotyp,

For smoothness, let { = w?. To avoid awkwardness in judging continuity involving infinities,
look at the continuity of 1/g, which will have the same continuity as the surface normal.

Then
-1

coty4 + cotyp log ¢ — cot vz

7

/9= {ié"“ +

or, essentially,
1/g = C*[L + ac*log ¢ +bC*] 7.
Hence

1/~ { 1/(1+alogC+b). k=0
I=V ek —a®log ¢ —b¢%*F 4 ..., itk >0.

Thus the normal is of class C° or almost of class C?* respectively.
Exact solutions can be found for arbitrary contact angles. For sample solutions, it is
convenient to use the strip in the ¢ plane as the domain. One function that works is

g — cotvyp
cotyq —cotyp )’

f(g) = sec (2vr

This dies off at g = oo fast enough to keep the surface finite. The factor 2 is included to
get the traces to go in the right direction. The shape of the trace on the half-planes works
out to be essentially

Y
loglyl |’

|z| o |z] o
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5. Case C: T+ vy4 —vyp<a<7m+v4+7B.

Here there is a common normal N to both half-planes, the Gauss circles cross trans-
versely, and the trace reaches the corner obliquely at a point R. There are several subcases,
as shown in figures 5, 6, and 7, depending on the concavity of the trace.

To find the general Weierstrass representation at R, orient the corner so that the
intersection of the Gauss circles that is not the R intersection is at the north pole and the
center of the circle for A is on the positive real axis. Let 6 be the argument of gp, which
can be found by a little spherical trigonometry:

cos(a — T) — CoSy4 COS YR
siny4 sinyp )
Note that the angle subtended by the surface around R is 0 + .

cosf =

Figure 5. Case Cl: 7+ v4 —vp < a < 7+ 74 +vp. Upper, surface trace. The trace
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meets the corner obliquely. Lower, Gauss map.

Subcase C1. (see figure 5) On the upper w half-plane, define

g(w) =gr+ i610w2k+1—0/7r.

Then by Lemma 1, the trace condition on the real w axis is

3 [(g(w) = gr)*f(w)/(dg/dw)] =0,

or

S _621',0“)4k+2—2(-)/7rf(w)(_Z-)e—al(-) o 71T) ew—2k+9/7r —0
/n' —

After dropping real factors, this boils down to
R eww_e/“f(w)] = 0.

Thus

For smoothness, take ¢ = w7 Then

2k+1—0/x

g(w) — gr o< (T3F7=
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/

Figure 6. Case C2: 71+ v4 — vyp < a < 7+ v4 + vp. Upper: surface trace. Lower:
Gauss map. There is a similar subcase with convexity reversed on the half-planes and with
the Gauss map wrapping around the left of R.

Subcase C2. (see figure 6) This works out similarly, with
g(w) = gp — iei0w2k+2—6/7r’
Flw) = —ie™ w0/ hw),
C — w1+9/7r

2k+2—0/m

g(w) — gp oc ¢ 1F7=
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V]
\/

Figure 7. Case C3: m+v4 —vp < a < 7+ 74+ vp. Upper, surface trace. The trace
meets the corner obliquely. Lower, Gauss map.

Subcase C3. (see figure 7) This works out similarly again, with

g(w) = gr — iei0w2k+1—0/7r,

Flw) = —ie= ().
C — ’U)1+0/7T,

2k+1—06/m

g(w) — gr ox (T TH=
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6. Case D: a =7+ 74 — vB.

Here the Gauss circle of B is internally tangent to that of A. The trace on the wall
crosses L tangentially at the point R. The Gauss image wraps all the way around R, as
shown in figure 8.

A

Figure 8. Case D: @« = m + v4 — 7p. Upper, surface trace. The trace crosses the
corner at a point of tangency. Lower, Gauss map.

To study the Weierstrass representation at the critical point R, orient the corner so
that L is the y-axis and the common normal (at R) points vertically upward and the
Gauss circles are in the positive x half-space. The Gauss circles pass through the north
pole of the Gauss sphere and the image in the g plane wraps down the right side of the
line Rg = coty4 to —ico, all the way around oo (perhaps multiple times), and back up the
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left side of the line g = cot yp. In the upper w half-plane, define the Gauss map to be

—o9_q1. COtyg —cotya
22k 4 7_ Y

g(w) = —iw
' i

log w + cot y4.

This wraps the Gauss image an extra k times around the north pole with the positive
w axis mapping to the A trace and the negative w axis mapping to the B trace. As in
case B, the trace conditions for f on the real w axis become Rf(w) = 0. The surface at
R subtends an angle of 7, so g(w)?f(w)dw x dw, which means f(w) has a zero of order
4k + 4. Hence the general Weierstrass representation is

. cot — cot
fw=2=2k 4 ’YB' YA
1T

g(w) = — logw + cot ya,

fw) = iw* T n(w).

For smoothness, let ( = w. Again as in case B, look at the smoothness of 1/g. Then,
essentially,

1/9 ~ C2+2k[1 4 ac2+2k log C 4+ bc2+2k]—1‘

Hence

1/g = ¥k g4 Jog ¢ — bCHHF 4

Thus the normal is almost of class C*t4F,
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7. Case E: a > 71 —7v4+ vB.

Here the Gauss trace can go along the stable part of the Gauss circle of L from the
outside of one Gauss circle to the inside of the other. Hence the trace itself has to go along
line L to get from one half-plane to another. Referring to figure 9, along the segment QS
the orientation of the tangent plane rotates from proper angle for A to the proper angle

for B.

T

Figure 9. Case E: @ > m —y4 + 7p. Upper, surface trace. The trace runs along the
corner while its normal turns. Only o = 7 is pictured here, but this case covers a wide
range of a. It includes all concave and some convex corners.

The general form of the Weierstrass representation around () and S is the same as in
case A since the local geometry there only involves one half-plane.
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This is the most convenient case in which to study the actual length of the trace along
the corner. An informative exact solution can be found easily for the case a = 7. We will
take the non-wall boundary of the surface to be a straight wire parallel to the plane at an
angle 6 to the line L, 6 being positive clockwise, and at some distance H from the plane.
Note that for # < 0 the surface is the mirror image in the x, z-plane of the surface for
|#]. To get a nice domain, orient the coordinate axes so that positive z is to the left and
positive y is upward. This means we are looking up through the south pole of the Gauss
sphere, and on the g plane the domain is in an annulus. The radii of the circles can be
calculated from the values of g at points () and S:

g° -1
9> +1

= —cos7,

SO
gq = tan(ya/2), gs = tan(yp/2).

For the parameter, take w = log g. Then the domain in the w-plane is a rectangle.
The trace condition for f(w) may be taken to be dz = 0 or R[2g(w) f(w)dw] = 0 on the
whole trace. Since g = ", this means that on the top and bottom sides of the rectangle
(where dw is real) we have R[e” f(w)] = 0, and on the left and right sides (where dw
is imaginary) we have J[e” f(w)] = 0. Hence e" f(w) must have zeroes or poles at the
corners. We want poles at 7" and P since the surface goes off to infinity there. We want
zeroes at () and S. By the reflection principle, e® f(w) must be doubly periodic. All this
points to elliptic functions; in particular,

w— w
e f(w) = Csn (2K75> .
wgo —wWs
where C' is an arbitrary real constant which sets the scale of the surface and the condition
on the quarter periods K and iK' is

6

K =2K—.
Wy —wWs

(See chapter 16 of [AS] for information on sn.) Hence

fw)=Ce ™ sn (QKw> .
wg —wWs

Figure 10 shows the ratio H/D between the distance H of the wire from the wall and
the length D of the trace along L for y4 = 7/2 and various values of yp and 0. Note that
extremely large values are reached for very run-of-the-mill angles. The maximum value of
0 shown is 7, but there is no reason to stop there if you're willing to move the boundary
line between A and B to follow the trace where it wants to go. In the limit of an infinitely
high wire (H,6 — o0), one gets

f(w)=Ce ™" sin (WM> ,

’U)Q —wg
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and the trace blooms out into an exponential spiral.
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Figure 10. Case E exact solution. Ratio of wire height H to corner trace length D
for y4 = 7/2.

The case 74 = 7/2 is of special interest because by adjoining the mirror image surface
on the other side of the wall, one gets a surface that spans a corner of angle 27 with equal
contact angles yp on both sides of the half-plane. For yp = 7/3, this is just the case that
crops up in the examples mentioned above of free ends of zero thickness boundary wire.

This case illustrates the other of the possible behaviors that Lancaster [L] derived for
radial limits at a non-convex corner for a discontinuous trace. In figure 9, let the x, y plane
be endowed with polar coordinates r, 6§ with origin at the corner, plane A at § = 0, and
plane B at 6 = «, and let the surface be represented as z = f(r,6). The behavior is that
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the radial limit is constant on an interval of 8, then monotone then finally constant. Here

2Q; ifOSQSW_IYAa
Rf(0) = {increasing, ifr—y4a<0<a-—9p,
Zs ifa—yp <0 <a

8. Case F: a =7 — 74+ 7B

Here we have a convex corner with the Gauss circle of B internally tangent to that of
A. The trace crosses L tangentially. See figure 11. Exact solutions work out much as in
case B. In fact, case B solutions can be made by pasting two of these solutions together
along the midline of case B.

x>

Figure 11. Case F: a = 7 — v4 + vp. Upper, surface trace. Lower, Gauss map. The
trace crosses the corner at a point of tangency R.
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To study the Weierstrass representation at the critical point R, orient the corner so
that L is the y-axis and the common normal (at R) points vertically upward and the Gauss
circles are in the positive x half-space. Then the Gauss circles pass through the north pole
of the Gauss sphere and the image in the g plane is the strip coty4 < Rg < cotyp with
gr = +ico, with an arbitrary number of wraps around the north pole. In the upper w
half-plane, define the Gauss map to be

—9k n cotyp — cotya
i

g(w) = iw log w + cot 4.

This wraps the Gauss image k times around the north pole with the positive w axis
mapping to the A trace and the negative w axis mapping to the B trace. As in case B,
the trace conditions for f(w) on the real w axis become Rf(w) = 0. The surface at R
subtends an angle of 7, so g(w)? f(w)dw o dw, which means f(w) has a zero of order 4k.
Hence the general Weierstrass representation is

cotyp — cotya

glw) = iw™* 4
im

f(w) = iw**h(w).

log w + cot y4,

For smoothness, let ( = w. Again as in case B, look at the smoothness of 1/g. Then
essentially,

1/g =~ C**[1 + a¢** log ¢ + b¢2F) 1L,

Hence

1/g~ 1/(14+alog¢ +b), if £ =0;
T2V~ ¢ — al**log ¢ — bC** + ..., if k> 0.

Thus the normal is of class C° or almost of class C** respectively.
As in case B, sample solutions are easy to find in the strip in the g plane. One function

that works is
— cof
f(g) = sec (7r g COr A )
cotyp — cotya

The shape of the trace is approximately

|z| o |z] o ‘L‘
| log y|
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9. Case G: m—vy4 —yp<a<m—74+7YB.

This is the convex corner counterpart to case C. Once again, there is a common normal
to both sides, and the trace reaches the corner obliquely. There are several subcases, as
shown in figures 12, 13, and 14, depending on the concavity of the trace.

The general form of the Weierstrass representation is like that in case C. Here, though,
the angle subtended by the surface at R is 7 — 6.

Figure 12. Case Gl: m—y4—vp < a < m—~y4+vp. Upper, surface trace. The trace
meets the corner obliquely. Lower, Gauss map. There is also a case where the domain is
on the opposite side of R, lightly shaded.
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Subcase G1. (see figure 12) This works out with

g(w) = gr + iw** 0/,

F(w) = —iw= " h(w),
C _ w1—0/7r7

2k+0/x

g(w) — g o< (T

L T

@ ’
A
Figure 13. Case G2: m —y4 — 7B < @ < ® — v4 + 7vB. Upper, surface trace. The
trace meets the corner obliquely. Lower, Gauss map.
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Subcase G2. (see figure 13) This works out similarly, with

g(w) = g — w1,
Flaw) = —iw*h(w),
C = wl_O/ﬂ—u
2k4140/n

g(w) — gr o< (T

L

o
QD

Figure 14. Case G3: m —y4 — 7B < @ < ® — v4 + 7vB. Upper, surface trace. The
trace meets the corner obliquely. Lower, Gauss map.
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Subcase G3. (see figure 14) This works out similarly again, with

g(w) = gg — iwkFHO/T
f(w) = —iw™"h(w),
C _ ,wl—é’/vr7

. 2k+1+6/7
g(w) = gr o< 7=

10. Case H: a =7 —vy4 — 7B.

In this case, there is a single common surface normal N for the two planes, and it is
perpendicular to the corner line L. The geometry is such that if H is a plane perpendicular
to N inside the corner, then the strip of H cut off by the corner is a minimal surface with
the proper contact angles on the half-planes.

It turns out that the trace cannot cross the corner. If one tries to construct a Weier-
strass representation that does, one runs into a contradiction. Suppose a surface existed
with its trace crossing L. The geometry of the situation forces the surface to form a cusp
at a point R on L, at which the surface subtends a zero angle. The Gauss map analysis
is like that for case D, leading to f(w) real on the real w axis and g(w) ~ w~2. But then
there is no way to choose the leading power of f(w) so that the surface subtends a zero
angle.

Another way to see that such a surface is impossible is to use the strip of H mentioned
above to cut off the piece of the surface next to the corner. Move the piece upward a bit,
filling in the gap created with a piece of the plane H. The energy of this surface is exactly
the same as the original since the energy saved moving the trace up the wall is the same as
the area of the gap. By the analyticity of minimal surfaces, this surface is not a minimal
surface since it has a plane piece but does not lie entirely in that plane. Therefore a smaller
surface exists nearby and the original surface was not minimal.

One possible behavior is for the surface to asymptotically approach a plane strip
running up the corner. This differs from capillary surfaces, in which gravity keeps the
surface height bounded, and the trace does cross the corner with a continuous surface
normal [TL].

An interesting fact is that the non-wall boundary of a bounded minimal surface lies
entirely inside H, then so must the surface. If some part of the surface lies outside of H,
then the variation vectorfield that projects the outside of H opposite N to the wall and H
shows that the surface is not minimal. The corresponding fact is not true if the non-wall
boundary lies outside H, as may be seen by considering a slice of a catenoid bounded by
a circle parallel to one half-plane with its trace on that half-plane also being a circle.

11. Case I: a <7 — 74 — 7B

A similar argument to case H shows that the trace cannot cross the corner. But here
there isn’t even a solution that is a strip of plane running up the corner.
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12. A degenerate case: a =7 and y4 + v = 7.

This case describes a surface wrapping around the edge of a half-plane for which the
Gauss circles of the sides coincide. There are two general possibilities. First, this can
be just an ordinary example of case E with the surface normal rotating as the trace runs
along the edge of the half-plane. Second, the Gauss trace can jump from one circle to the
other at a continuum of possible points. This can be viewed as an example of case B with
at least one extra turn of the Gauss image around gg, the lowest order case discussed in
detail in case B above being non-existent when the Gauss circles coincide.

This case with y4 = yp = 7 corresponds to the situation treated in [HN]: a soapfilm
wrapping around the edge of a half-plane. Much of the analysis there also applies to this
slightly more general case. In particular, the even order branch points of [HN]| correspond
to my case E and the odd to my case B.

13. Contact angles 0 and 7.

If the contact angle on a half-plane is 0 or 7, then one fluid will completely wet the
half-plane and there will be no trace on that half-plane. However, there can still be a trace
along the corner and on the other half-plane. One could also have contact angle 0 on both
planes and still have a trace on the corner if @ > 7. There can be points where the trace
on L reverses direction, to which the analysis of point R in case A applies.

14. A wire meeting a plane.

Suppose a boundary wire of a surface meets a plane at an angle 6, measured between
the plane and the wire. Let v be the contact angle on the plane. If # < -, then the wire
and plane have a common normal, and the surface can have a nice tangent plane at the
intersection. If # > v, then there is no such nice possibility. The mathematical solution
here is that the trace on the plane makes an inward spiral infinitely many times around
the wire. For a sample exact solution, let the plane be horizontal and the wire vertical.
Take the domain to be 0 < fw < cot(y/2). Then one can take

g(w) =e",  f(w)=1dexp (—w + #{;}/20 '

The trace makes an exponential spiral whose radius decrease by a factor of 72/ cot(y/2)
each revolution.

If the surface is the boundary between two fluids, then an infinite spiral is not possible.
The spiral would run into the fluid boundary on the other side of the wire instead. The
net result is that the surface does not reach the intersection of the wire and plane. The
surface departs from the wire before reaching the plane, much like the surface departs the
wire where a free end goes through the surface. With the same configuration as in the
previous paragraph, an exact solution is

glw)y=e¢,  f(w)=e “sin (#&/2» '

28



15. Conclusion.

The behavior of minimal surfaces at a corner should also be the behavior of capillary
surfaces to a large degree. The Gauss trace considerations remain the same, and the
extra forces are negligible at a small scale. Perturbations such as curved walls, volume
constraints, or a continuously varying contact angle on each half-plane also should not
affect the small-scale behavior significantly. One of the themes of this paper is that when
there is not a common surface normal at a corner, the trace must run along the corner
while the normal turns, and that should apply to capillary surfaces also.

It is interesting to note that in the original case of a wire going through a soap film
that there are no unusual types of tangent cones on the wire. At each point on the wire,
the tangent cone of the surface is either a half-plane or two half-planes at angles of 27/3
or greater.

How does the infinitesimally thin wire solution match up with the thick wire solutions
as the wire diameter goes to zero? From afar, the very thin wire solution seems to have the
triple line meet the wire tangentially, but magnification shows that the triple line makes
a tiny sharp curve to actually meet the wire perpendicularly. Likewise, from afar it looks
like the skirt leaves the wire tangentially, but magnification shows a sharp curve near the
wire so the skirt meets the wire perpendicularly.

The type of analysis done in this paper also illuminates the behavior of surfaces where
several boundary wires meet. For example, if wires meet in a 1-shape, then the surface
will look much like the free-end surface above the point where the surface curls away from
the free end. The triple line will come in tangent to the vertical stem of the L some short
distance away from the intersection point, and the angle between the surfaces will grow
from 27 /3 to m between there and the intersection point.
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